Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination in Current Source Inverter

Author(s):  
Hamed Hosseinnia ◽  
Murteza Farsadi

The voltage source inverter (VSI) and Current source inverter (CSI) are two types of traditional power inverter topologies.In this paper selective harmonic elimination (SHE) Algorithm was impelemented to CSI and results has been investigated. Cat swarm (CSO) optimization is a new meta-heuristic algorithm which has been used in order to tuning switching parameters in optimized value.Objective fuction is reduction of total harmonic distortion(THD) in inverters output currents.All of simulation has been carried out in Matlab/Software.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2798 ◽  
Author(s):  
Efrén Fernández ◽  
Alejandro Paredes ◽  
Vicent Sala ◽  
Luis Romeral

Silicon carbide (SiC)-based switching devices provide significant performance improvements in many aspects, including lower power dissipation, higher operating temperatures, and faster switching; compared with conventional Si devices, all these features contribute to these devices generating interest in applications for electric traction systems. The topology that is frequently used in these systems is the voltage source inverter (VSI), but the use of SiC devices in the current source inverter topology (CSI), which is considered as an emerging topology, generates interest. This paper presents a method for improving total harmonic distortion (THD) in the currents of output and efficiency in SiC current source inverter for future application in an electric traction system. The method that is proposed consists of improving the coupling of a bidirectional converter topology, voltage current (V-I) and CSI. The V-I converter serves as a current regulator for the CSI, and allows for the recovery of energy. The method involves an effective selection of the switching frequencies and phase angles for the carrier signals that are present in each converter topology. With this method, it is expected to have a reduction of the total harmonic distortion, THD in the output currents. In addition, a comparative analysis between converters with all-SiC technology and converters with hybrid technology is realized, to verify the impact of the SiC devices in the power converters efficiency.


Author(s):  
Nik Fasdi Nik Ismail ◽  
Norazlan Hashim ◽  
Dalina Johari

This paper presents the analysis study between multilevel inverters that are often classified into multilevel voltage source and multilevel current source inverters.  For multilevel voltage source inverter (MVSI), the specific topology studied for this work is the Cascaded H-Bridge MVSI.  Whereas, the multilevel current source inverter (MCSI) is based on Paralleled Inductor Configuration MCSI.  For this study, the analysis between these converters are done with respect to the number of components, the advantages and disadvantages of each converters during performing inverter operation. In term of output voltage and current quality, the percentage of the Total Harmonic Distortion (THD) are measured and compared for both topologies.  MATLAB/Simulink software has been used in this research to design and simulate in order to study the performances of both inverters.


2019 ◽  
Vol 9 (1) ◽  
pp. 3836-3845
Author(s):  
Y. Gopal ◽  
K. P. Panda ◽  
D. Birla ◽  
M. Lalwani

The problem of elimination of harmonics and the need of a large number of switches in multilevel inverters (MLIs) have been a hot topic of research over the last decades. In this paper, a new variant swarm optimization (SO) based selective harmonic elimination (SHE) technique is described to minimize harmonics in MLIs, which is a complex optimization problem involving non-linear transcendental equation. Optimum switching angles are calculated by the proposed algorithms considering minimum total harmonic distortion (THD) and the best results are taken for controlling the operation of MLIs. The performance of the proposed algorithm is compared with the genetic algorithm (GA). Conventional MLIs have some disadvantages such as the requirement of a large number of circuit components, complex control, and voltage balancing problems. A novel seven-level reduced switch multilevel inverter (RS MLI) is proposed in this paper to recoup the need of a large number of switches. Matlab/Simulink software is used for the simulation of two symmetrical topologies, i.e., a seven-level cascaded H-bridge multilevel inverter (CHB MLI) and a seven-level (RS MLI). Simulation results are validated by developing a prototype of both MLIs. The enhancement of the output voltage waveform confirms the effectiveness of the proposed SO SHE approach.


2021 ◽  
Vol 14 (1) ◽  
pp. 310
Author(s):  
Rashid Ahmed Khan ◽  
Shoeb Azam Farooqui ◽  
Mohammad Irfan Sarwar ◽  
Seerin Ahmad ◽  
Mohd Tariq ◽  
...  

This paper presents the Archimedes optimization algorithm to eliminate selective harmonics in a cascaded H-bridge (CHB) multilevel inverter (MLI). The foremost objective of the selective harmonic elimination (SHE) is to eliminate lower order harmonics by finding the optimal switching angle combination which minimizes the objective function containing Total Harmonic Distortion (THD) and other specific harmonic terms. Consequently, the THD is also reduced. In this study, a recently proposed metaheuristic technique named the Archimedes optimization algorithm (AOA) is used to determine the optimal angles corresponding to the 5, 7 and 9 level CHB-MLI. AOA involves equations related to a physical law, the Archimedes Principle. It is based on the idea of a buoyant force acting upward on a body or object that is partially or completely submerged in a fluid, and the upward force is related to the weight of the fluid displaced. This optimization technique has been implemented on CHB-MLI to generate various level outputs, simulated on MATLAB™ R2021a version environment software. The simulation results reveal that AOA is a high-performance optimization technique in terms of convergence speed and exploitation-exploration balance and is well-suited to the solution of the SHE problem. Furthermore, the laboratory validated the simulation result on a hardware setup using DSP-TMS320F28379D.


Author(s):  
K. Vijayalakshmi ◽  
Chinnapettai Ramalingam Balamurugan

<p>In this paper Embedded based Z-source multilevel inverter (ZSMLI) is proposed. This work implements a five level cascaded H-bridge Z-source inverter by using embedded control. Switching devices are triggered using embedded controller. In this controller coding is described by using switching table. The presence of Z-source network couples inverter main circuit to the power source that providing special features that can overcome the limitations of VSI (voltage source inverter) and CSI (current source inverter). The Z-source concept can applicable in all dc-ac, dc-dc, ac-dc and ac-ac power conversions. Simulation model of Z-source multilevel inverter based on embedded controller has been built in MATLAB/SIMULINK. The Performance parameters of Z-source MLI such as RMS (root mean square) output voltage, THD (total harmonic distortion) and DC component have been analysed for various inductance (L) and capacitance (C) value.</p>


Author(s):  
Ibrahim Haruna Shanono ◽  
Nor Rul Hasma Abdullah ◽  
Aisha Muhammad

<p>This paper presents an efficient cascaded H-bridge inverter topology that is controlled using an optimized selective harmonic elimination pulse width modulation technique. The switching angles are obtained by solving the nonlinear transcendental equation with the aid of genetic algorithm optimization method. Unlike the usual H-bridge converter topologies that require multiple individual direct current (DC) sources and additional switching components per voltage step, the proposed topology utilizes a single DC source to supply two full-bridge modules. The modified topology employs a cascaded multi-winding transformer that has two independent primary windings and series-connected secondary side with 1:E  and 1:3E  turn ratios. The converter topology and switching function are proven to be reliable and efficient, as the total harmonic distortion (THD) is quite low when compared with the conventional H-bridge topology controlled by other modulation techniques. This feature makes it attractive to renewable energy systems, distributed generation, and highly sensitive equipment such as those used in medical, aerospace, and military applications. The topology is simulated using a PSIM package. Simulation results show that all the 11-level lower order odd harmonics are eliminated or suppressed in compliance with the SHE elimination theorem of (N-1).</p>


2019 ◽  
Vol 8 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Ezzidin Hassan Aboadla ◽  
Sheroz Khan ◽  
Mohamed H. Habaebi ◽  
Teddy Surya Gunawan ◽  
Belal A. Hamida ◽  
...  

The main goal of utilizing Selective Harmonic Elimination (SHE) techniques in Multilevel Inverters (MLI) is to produce a high-quality output voltage signal with a minimum Total Harmonic Distortion (THD). By calculating N switching angles, SHE technique can eliminate (N-1) low order odd harmonics of the output voltage waveform. To optimized and obtained these switching angles, N of nonlinear equations should be solved using a numerical method. Modulation index (m) and duty cycle play a big role in selective harmonic elimination technique to obtain a minimum harmonic distortion and desired fundamental component voltage. In this paper, a novel Optimization Harmonic Elimination Technique (OHET) based on SHE scheme is proposed to re-mitigate Total Harmonic Distortion. The performance of seven-level H-bridge cascade inverter is evaluated using PSIM and validated experimentally by developing a purposely built microcontroller-based printed circuit board.


Author(s):  
K Venkateswara Rao ◽  
◽  
G Joga Rao ◽  

Cascaded structured multilevel inverters are gaining lot of importance due to their simple structure and easiness in implementation. In this paper, the optimum selective harmonic elimination method is employed for a nine level inverter to suppress the selected lower order harmonic, which reduces the total harmonic distortion of the inverter considerably. The Newton rapson algorithm is employed in finding the switching angles that minimizes certain lower order harmonics. The order of the harmonics that are eliminated are third, fifth, and seventh harmonics. All the simulation results included for a nine level inverter using SIMULINK. Index Terms: Nine level MLI, Control of inverter, Modular Inverter.


Sign in / Sign up

Export Citation Format

Share Document