Whole-field board strain and displacement characterization during drop impact using a single camera DIC technique

Author(s):  
Fabian Zhi De Lim ◽  
Long Bin Tan ◽  
Chenggen Quan ◽  
Tong Yan Tee
Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4726 ◽  
Author(s):  
Bo Dong ◽  
Fancang Zeng ◽  
Bing Pan

A simple and practical full-frame single-camera stereo-digital image correlation (stereo-DIC) technique for three-dimensional (3D) shape, displacement, and deformation measurements is proposed. The technique uses a compact X-cube prism-based color separation device and a color camera to capture images of blue and red colors from different optical paths, and then extracts the surface 3D shape and deformation information of a test sample by processing the captured two sub-channel color images using regular stereo-DIC algorithm. Compared with the existing full-frame single-camera stereo-DICs, the proposed one eliminates the need for a beam splitter and two bandpass filters to capture images, and offers more simple, compact, and easy-to-use optical arrangement. This novel single-camera stereo-DIC technique was validated by a series of baseline experiments involving 3D surface reconstructions, translation tests, and full-field deformation measurements, which provide a new flexible and practical avenue for measuring surface 3D shape and deformation, particularly in microscopic and high-speed applications.


2010 ◽  
Vol 1 (1) ◽  
pp. 51-62
Author(s):  
Marta Braun

Eadweard Muybridge's 1887 photographic atlas Animal Locomotion is a curious mixture of art and science, a polysemic text that has been subject to a number of readings. This paper focuses on Muybridge's technology. It seeks to understand his commitment to making photographs with a battery of cameras rather than a single camera. It suggests reasons for his choice of apparatus and shows how his final work, The Human Figure in Motion (1901), justifies the choices he made.


1986 ◽  
Vol 50 (6) ◽  
pp. 1644-1645
Author(s):  
Alfredo G. Ferreira ◽  
Bruce E. Larock ◽  
Michael J. Singer

2021 ◽  
Vol 923 ◽  
Author(s):  
Vanessa R. Kern ◽  
Joshua B. Bostwick ◽  
Paul H. Steen

Abstract


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2232
Author(s):  
Antonio Albiol ◽  
Alberto Albiol ◽  
Carlos Sánchez de Merás

Automated fruit inspection using cameras involves the analysis of a collection of views of the same fruit obtained by rotating a fruit while it is transported. Conventionally, each view is analyzed independently. However, in order to get a global score of the fruit quality, it is necessary to match the defects between adjacent views to prevent counting them more than once and assert that the whole surface has been examined. To accomplish this goal, this paper estimates the 3D rotation undergone by the fruit using a single camera. A 3D model of the fruit geometry is needed to estimate the rotation. This paper proposes to model the fruit shape as a 3D spheroid. The spheroid size and pose in each view is estimated from the silhouettes of all views. Once the geometric model has been fitted, a single 3D rotation for each view transition is estimated. Once all rotations have been estimated, it is possible to use them to propagate defects to neighbor views or to even build a topographic map of the whole fruit surface, thus opening the possibility to analyze a single image (the map) instead of a collection of individual views. A large effort was made to make this method as fast as possible. Execution times are under 0.5 ms to estimate each 3D rotation on a standard I7 CPU using a single core.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Samya Sen ◽  
Anthony G. Morales ◽  
Randy H. Ewoldt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document