Multiscale FE modeling concepts applied to microelectronic device simulations

Author(s):  
H. Kock ◽  
S. de Filippis ◽  
M. Nelhiebel ◽  
M. Glavanovics ◽  
M. Kaltenbacher
Author(s):  
J. K. Maurin

Conductor, resistor, and dielectric patterns of microelectronic device are usually defined by exposure of a photosensitive material through a mask onto the device with subsequent development of the photoresist and chemical removal of the undesired materials. Standard optical techniques are limited and electron lithography provides several important advantages, including the ability to expose features as small as 1,000 Å, and direct exposure on the wafer with no intermediate mask. This presentation is intended to report how electron lithography was used to define the permalloy patterns which are used to manipulate domains in magnetic bubble memory devices.The electron optical system used in our experiment as shown in Fig. 1 consisted of a high resolution scanning electron microscope, a computer, and a high precision motorized specimen stage. The computer is appropriately interfaced to address the electron beam, control beam exposure, and move the specimen stage.


Author(s):  
Qing Yang ◽  
John Mardinly ◽  
Christian Kübel ◽  
Chris Nelson ◽  
Christian Kisielowski

Author(s):  
Z. G. Song ◽  
S. P. Neo ◽  
S. K. Loh ◽  
C. K. Oh

Abstract New process will introduce new failure mechanisms during microelectronic device manufacturing. Even if the same defect, its root causes can be different for different processes. For aluminum(Al)-tungsten(W) metallization, the root cause of metal bridging is quite simple and mostly it is blocked etch or under-etch. But, for copper damascene process, the root causes of metal bridging are complicated. This paper has discussed the various root causes of metal bridging for copper damascene process, such as those related to litho-etch issue, copper CMP issue, copper corrosion issue and so on.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amin Mohamadi ◽  
Kaveh Momenzadeh ◽  
Aidin Masoudi ◽  
Kempland C. Walley ◽  
Kenny Ierardi ◽  
...  

Abstract Background Knowledge regarding the biomechanics of the meniscus has grown exponentially throughout the last four decades. Numerous studies have helped develop this knowledge, but these studies have varied widely in their approach to analyzing the meniscus. As one of the subcategories of mechanical phenomena Medical Subject Headings (MeSH) terms, mechanical stress was introduced in 1973. This study aims to provide an up-to-date chronological overview and highlights the evolutionary comprehension and understanding of meniscus biomechanics over the past forty years. Methods A literature review was conducted in April 2021 through PubMed. As a result, fifty-seven papers were chosen for this narrative review and divided into categories; Cadaveric, Finite element (FE) modeling, and Kinematic studies. Results Investigations in the 1970s and 1980s focused primarily on cadaveric biomechanics. These studies have generated the fundamental knowledge basis for the emergence of FE model studies in the 1990s. As FE model studies started to show comparable results to the gold standard cadaveric models in the 2000s, the need for understanding changes in tissue stress during various movements triggered the start of cadaveric and FE model studies on kinematics. Conclusion This study focuses on a chronological examination of studies on meniscus biomechanics in order to introduce concepts, theories, methods, and developments achieved over the past 40 years and also to identify the likely direction for future research. The biomechanics of intact meniscus and various types of meniscal tears has been broadly studied. Nevertheless, the biomechanics of meniscal tears, meniscectomy, or repairs in the knee with other concurrent problems such as torn cruciate ligaments or genu-valgum or genu-varum have not been extensively studied.


2021 ◽  
Vol 281 ◽  
pp. 122550
Author(s):  
Jiandong Huang ◽  
Massimo Losa ◽  
Pietro Leandri ◽  
Shiva G. Kumar ◽  
Junfei Zhang ◽  
...  
Keyword(s):  

2010 ◽  
Vol 48 (2) ◽  
pp. 349-359 ◽  
Author(s):  
M.A. Matin ◽  
D. Akai ◽  
N. Kawazu ◽  
M. Hanebuchi ◽  
K. Sawada ◽  
...  

2011 ◽  
Vol 58-60 ◽  
pp. 2171-2176 ◽  
Author(s):  
Yuan Chen ◽  
Xiao Wen Zhang

Focused ion beam (FIB) system is a powerful microfabrication tool which uses electronic lenses to focus the ion beam even up to nanometer level. The FIB technology has become one of the most necessary failure analysis and failure mechanism study tools for microelectronic device in the past several years. Bonding failure is one of the most common failure mechanisms for microelectronic devices. But because of the invisibility of the bonding interface, it is difficult to analyze this kind of failure. The paper introduced the basic principles of FIB technology. And two cases for microelectronic devices bonding failure were analyzed successfully by FIB technology in this paper.


2012 ◽  
Vol 26 (1) ◽  
pp. 233-243 ◽  
Author(s):  
D. Dias-da-Costa ◽  
J. Alfaiate ◽  
E.N.B.S. Júlio

Sign in / Sign up

Export Citation Format

Share Document