Wave Loading and Wind Energy of a Spar Buoy Floating Wind Turbine

Author(s):  
Thomas P. Mazarakos ◽  
Spyridon A. Mavrakos ◽  
Takvor H. Soukisian
Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
J. V. Muruga Lal Jeyan ◽  
Akhila Rupesh ◽  
Jency Lal

The aerodynamic module combines the three-dimensional nonlinear lifting surface theory approach, which provides the effective propagated incident velocity and angle of attack at the blade section separately, and a two-dimensional panel method for steady axisymmetric and non-symmetric flow has to be involved to obtain the 3D pressure and velocity distribution on the wind mill model blade. Wind mill and turbines have become an economically competitive form of efficiency and renewable work generation. In the abroad analytical studies, the wind turbine blades to be the target of technological improvements by the use of highly possible systematic , aerodynamic and design, material analysis, fabrication and testing. Wind energy is a peculiar form of reduced form of density source of power. To make wind power feasible, it is important to optimize the efficiency of converting wind energy into productivity source. Among the different aspects involved, rotor aerodynamics is a key determinant for achieving this goal. There is a tradeoff between thin airfoil and structural efficiency. Both of which have a strong impact on the cost of work generated. Hence the design and analysis process for optimum design requires determining the load factor, pressure and velocity impact and optimum thickness distribution by finding the effect of blade shape by varying thickness on the basis of both the aerodynamic output and the structural weight.


2021 ◽  
Vol 78 ◽  
pp. 102970
Author(s):  
B. Wiegard ◽  
M. König ◽  
J. Lund ◽  
L. Radtke ◽  
S. Netzband ◽  
...  

2021 ◽  
Vol 221 ◽  
pp. 108528
Author(s):  
Shengwen Xu ◽  
Motohiko Murai ◽  
Xuefeng Wang ◽  
Kensaku Takahashi

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 248
Author(s):  
Lorenzo Cottura ◽  
Riccardo Caradonna ◽  
Alberto Ghigo ◽  
Riccardo Novo ◽  
Giovanni Bracco ◽  
...  

Wind power is emerging as one of the most sustainable and low-cost options for energy production. Far-offshore floating wind turbines are attractive in view of exploiting high wind availability sites while minimizing environmental and landscape impact. In the last few years, some offshore floating wind farms were deployed in Northern Europe for technology validation, with very promising results. At present time, however, no offshore wind farm installations have been developed in the Mediterranean Sea. The aim of this work is to comprehensively model an offshore floating wind turbine and examine the behavior resulting from a wide spectrum of sea and wind states typical of the Mediterranean Sea. The flexible and accessible in-house model developed for this purpose is compared with the reference model FAST v8.16 for verifying its reliability. Then, a simulation campaign is carried out to estimate the wind turbine LCOE (Levelized Cost of Energy). Based on this, the best substructure is chosen and the convenience of the investment is evaluated.


Sign in / Sign up

Export Citation Format

Share Document