Some concepts of the real-time MTIE assessment for multi-channel time error measurement

Author(s):  
Andrzej Dobrogowski ◽  
Michal Kasznia
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2124 ◽  
Author(s):  
Li Han ◽  
Rongchang Zhang ◽  
Xuesong Wang ◽  
Yu Dong

This paper looks at the ability to cope with the uncertainty of wind power and reduce the impact of wind power forecast error (WPFE) on the operation and dispatch of power system. Therefore, several factors which are related to WPFE will be studied. By statistical analysis of the historical data, an indicator of real-time error based on these factors is obtained to estimate WPFE. Based on the real-time estimation of WPFE, a multi-time scale rolling dispatch model for wind/storage power system is established. In the real-time error compensation section of this model, the previous dispatch plan of thermal power unit is revised according to the estimation of WPFE. As the regulating capacity of thermal power unit within a short time period is limited, the estimation of WPFE is further compensated by using battery energy storage system. This can not only decrease the risk caused by the wind power uncertainty and lessen wind spillage, but also reduce the total cost. Thereby providing a new method to describe and model wind power uncertainty, and providing economic, safe and energy-saving dispatch plan for power system. The analysis in case study verifies the effectiveness of the proposed model.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2908
Author(s):  
Aidong Zeng ◽  
Sipeng Hao ◽  
Jia Ning ◽  
Qingshan Xu ◽  
Ling Jiang

A real-time error correction operation model for an integrated energy system is proposed in this paper, based on the analysis of the real-time optimized operation structure of an integrated energy system and the characteristics of the system. The model makes real-time corrections to the day-ahead operation strategy of the integrated energy system, to offset forecast errors from the renewable power generation system and multi-energy load system. When unbalanced power occurs in the system due to prediction errors, the model comprehensively considers the total capacity of each energy supply and energy storage equipment, adjustable margin, power climbing speed and adjustment cost, to formulate the droop rate which determines the unbalanced power that each device will undertake at the next time interval, while taking the day-ahead dispatching goals of the system into consideration. The case study shows that the dispatching strategy obtained by the real-time error correction operation model makes the power output change trend of the energy supply equipment consistent with the day-ahead dispatching plan at the next time interval, which ensures the safety, stability and economy of the real-time operation of the integrated energy system.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Author(s):  
Jiyang Yu ◽  
Dan Huang ◽  
Siyang Zhao ◽  
Nan Pei ◽  
Huixia Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document