One-Shot Gesture Recognition: One Step Towards Adaptive Learning

Author(s):  
Maria E. Cabrera ◽  
Natalia Sanchez-Tamayo ◽  
Richard Voyles ◽  
Juan P. Wachs
Author(s):  
Yingwei Zhang ◽  
Yiqiang Chen ◽  
Hanchao Yu ◽  
Xiaodong Yang ◽  
Ruizhe Sun ◽  
...  

Surface electromyography (sEMG) array based gesture recognition, which is widely-used, could provide natural surfaces for human-computer interaction. Currently, most existing gesture recognition methods with sEMG array only work with the fixed and pre-defined electrodes configuration. However, changes in the number of electrodes (i.e., increment or decrement) is common in real scenarios due to the variability of physiological electrodes. In this paper, we study this challenging problem and propose a random forest based ensemble learning method, namely feature incremental and decremental ensemble learning (FIDE). FIDE is able to support continuous changes in the number of electrodes by dynamically maintaining the matrix sketches of every sEMG electrode and spatial structure of sEMG array. To evaluate the performance of FIDE, we conduct extensive experiments on three benchmark datasets, including NinaPro, CSL-hdemg, and CapgMyo. Experimental results demonstrate that FIDE outperforms other state-of-the-art methods and has the potential to adapt to the evolution of electrodes in the changing environments. Moreover, based on FIDE, we implement a multi clients/server collaboration system, namely McS, to support feature adaption in real-world environment. By collecting sEMG using two clients (smartphone and personal computer) and adaptively recognizing gestures in the cloud server, FIDE significantly improves the gesture recognition accuracy in electrode increment and decrement circumstances.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


2010 ◽  
Vol 43 (18) ◽  
pp. 16
Author(s):  
MATTHEW R.G. TAYLOR
Keyword(s):  

2007 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.W. Kim ◽  
Y.H. Kim ◽  
H.G. Cha ◽  
D.K. Lee ◽  
Y.S. Kang

1980 ◽  
Vol 25 (7) ◽  
pp. 536-538
Author(s):  
LUCIA ALBINO GILBERT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document