Building Design Experience and a Greater Sense of Community through an Integrated Design Project

Author(s):  
Joshua Hamel ◽  
Claire Strebinger ◽  
Eric Gilbertson ◽  
Yen-Lin Han ◽  
Kathleen Cook ◽  
...  
Author(s):  
Patricia Kristine Sheridan ◽  
Jason A Foster ◽  
Geoffrey S Frost

All Engineering Science students at the University of Toronto take the cornerstone Praxis Sequence of engineering design courses. In the first course in the sequence, Praxis I, students practice three types of engineering design across three distinct design projects. Previously the final design project had the students first frame and then develop conceptual design solutions for a self-identified challenge. While this project succeeded in providing an appropriate foundational design experience, it failed to fully prepare students for the more complex design experience in Praxis II. The project also failed to ingrain the need for clear and concise engineering communication, and the students’ lack of understanding of detail design inhibited their ability to make practical and realistic design decisions. A revised Product Design project in Praxis I was designed with the primary aims of: (a) pushing students beyond the conceptual design phase of the design process, and (b) simulating a real-world work environment by: (i) increasing the interdependence between student teams and (ii) increasing the students’ perceived value of engineering communication.


2017 ◽  
Author(s):  
Devin R. Berg ◽  
Matthew Wigdahl ◽  
Charis D. Collins

This Work in Progress paper presents on the design of project-based learning approach focused on assistive technology as applied in a freshmen level engineering course which also integrates outreach with the local K12 system. The university course targets general education topics as well as an introductory engineering design experience and includes content on the engineering design process, societal implications of engineering design, and a participatory lab-based design project. A partnering class of 5th graders from a local elementary school made use of a daily block of time set aside for academic interventions and individual project-based work to collaborate with the university class. A qualitative assessment was conducted and has thus far has revealed that the university students found the assistive technology theme of the semester-long design project to be meaningful. For the K12 students, the survey results and anecdotal observations suggest that we were only moderately successful in constructing a meaningful and purposeful design experience, from their perspective.


2021 ◽  
Vol 01 (01) ◽  
pp. 08-09
Author(s):  
Harinda Gunawardena ◽  
◽  
Udaya Wickramasinghe ◽  

As the final year comprehensive design project for the Honours Degree of Bachelor of Design, Department of Integrated Design, Faculty of Architecture, University of Moratuwa, I have selected a project which is based upon my own clothing brand. It is an emerging ready-to-wear clothing brand based in Sri Lanka, which was launched in August 2020 through the Colombo Fashion Week named “HARID”. Currently, HARID retails at the Design Collective store in Colombo for a consumer group based upon it. The brand philosophy of HARID is to challenge gender-related stereotypical concepts. As the brand identity, HARID uses heritage craft practices.


2021 ◽  
Author(s):  
Filippo A. Salustri ◽  
W. Patrick Neumann

The design experience of 3rd year undergraduates in Mechanical Engineering at Ryerson University, and the assessment of student design work, was found to be disjointed and highly variable across the program. To attempt to address this, the authors are constructing courseware to help instructors of non-design engineering courses embed rich and consistent design projects into their courses. A “lightweight” Fast-Design process was developed. Course-specific design project examples of the process are being developed for five 3rd year courses using this design process. Current versions of all courseware are freely available. This paper details the nature of the courseware and how it was designed, developed,and deployed for the project. To date, one case has been deployed, two developed, and two more are under development. While results are so far only anecdotal, there is reason to believe that our approach can noticeably improve the design experience of students in non-design engineering courses.


2021 ◽  
Author(s):  
Filippo A. Salustri ◽  
W. Patrick Neumann

The design experience of 3rd year undergraduates in Mechanical Engineering at Ryerson University, and the assessment of student design work, was found to be disjointed and highly variable across the program. To attempt to address this, the authors are constructing courseware to help instructors of non-design engineering courses embed rich and consistent design projects into their courses. A “lightweight” Fast-Design process was developed. Course - specific design project examples of the process are being developed for five 3rd year courses using this design process. Current versions of all courseware are freely available. This paper details the nature of the courseware and how it was designed, developed, and deployed for the project. To date, one case has been deployed, two developed, and two more are under development. While results are so far only anecdotal, there is reason to believe that our approach can noticeably improve the design experience of students in non-design engineering courses.


Author(s):  
Daniel Forgues ◽  
Sheryl Staub-French ◽  
Leila M. Farah

Drastic changes are occurring in the construction industry. Building Information Modeling (BIM) processes and technologies, and new Integrated Project Delivery (IPD) approaches are transforming the way buildings are planned, designed, built and operated. With the needs for new skills to cope with these accelerating changes, architecture, engineering and construction (AEC) associations in the United States are working with universities to reengineer teaching programs, integrating architecture training within an engineering and construction curriculum. Leading universities are already developing new programs, such as BIM studio courses, and promoting new ways to teach practice knowledge within design laboratories.These changes are also starting to occur in the Canadian industry. Some large governmental bodies are starting to request that their projects are designed and built using BIM. Canadian universities must respond to these changing requirements to prepare future architects, engineers, and construction managers for these new challenges and emerging industry needs. This paper provides examples for how to bridge this gap by bringing practice knowledge and research to the classroom. First, it synthesizes the impact of BIM and IPD on engineering practices in Canada. Second, it describes curriculum development undertaken between a school of architecture and two engineering departments for the development of multidisciplinary design studios to teach integrated design and BIM. Case studies are set in urban contexts and include the development of new buildings as well as refurbishment proposals for an industrial obsolete landmark. Finally, learning from this teaching and research experience, it raises questions and issues regarding our readiness to cope with this paradigm shift.


2019 ◽  
Vol 13 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Mathilde Landgren ◽  
Signe Skovmand Jakobsen ◽  
Birthe Wohlenberg ◽  
Lotte Bjerregaard Jensen

Purpose In recent decades there has been a focus on reducing the overall emissions from the built environment, which increases the complexity of the building design process. More specialized knowledge, a greater common understanding and more cooperation between the stakeholders are required. Interdisciplinary design teams need simple and intuitive means of communication. Architects and engineers are starting to increase their focus on improving interdisciplinary communication, but it is often unclear how to do so. The purpose of this paper is to define the impact of visually communicating engineering knowledge to architects in an interdisciplinary design team and to define how quantifying architectural design decisions have an impact during the early phases of sustainable building design. Design/methodology/approach This work is based on a study of extensive project materials consisting of presentations, reports, simulation results and case studies. The material is made available by one of the largest European Engineering Consultancies and by a large architectural office in the field of sustainable architecture in Denmark. The project material is used for mapping communication concepts from practice. Findings It is demonstrated that visual communication by engineers increases the level of technical knowledge in the design decisions made by architects. This is essential in order to reach the goal of designing buildings with low environmental impact. Conversely, quantification of architectural quality improved the engineer’s acceptance of the architects’ proposals. Originality/value This paper produces new knowledge through the case study processes performed. The main points are presented as clearly as possible; however, it should be stressed that it is only the top of the iceberg. In all, 17 extensive case studies design processes were performed with various design teams by the 3 authors of the paper Mathilde, Birthe and Signe. The companies that provided the framework for the cases are leading in Europe within sustainability in the built environment, and in the case of Sweco also in regards to size (number of employees). Data are thus first hand and developed by the researchers and authors of this paper, with explicit consent from the industry partners involved as well as assoc. Professor Lotte B. Jensen Technical University of Denmark (DTU). This material is in the DTU servers and is in the PhD dissertation by Mathilde Landgren (successful defence was in January 2019). The observations and reflection is presented in selected significant case examples. The methods are descriped in detail, and if further information on method is required a more in depth description is found in Mathilde Landgrens PhD Dissertation. There is a lack in existing literature of the effect of visualisation in interdisciplinary design teams and though the literature (e.g. guidelines) of integrated design is extensive, there is not much published on this essential part of an integrated design process.


2018 ◽  
Vol 2 (2) ◽  
pp. 135-143
Author(s):  
Jeanne-Louise Moys

This case study explores how a students-as-partners approach is helping students in the Graphic Communication programme at the University of Reading gain experience of community through a curriculum design project. The “I am, we are … different by design” project began as a partnership initiative aimed at identifying strategies to extend students’ experience of diversity in the curriculum. Drawing on a mid-project evaluation, the case study presented here explores student partners’ perceptions of achievements and challenges, including developing a sense of community and the impact on career development. It also highlights how supporting opportunities for visibility and recognition throughout a project may contribute to sustaining a culture of reciprocity in partnership.


Author(s):  
L. Bejhat ◽  
S. Magierowski ◽  
G. Messier ◽  
W. D. Rosehard ◽  
H. Zareipour

The paper presents a few simple approaches that have been used to integrate design experiences into regular technical courses. In addition, a possible future initiative to link material from different technical courses through a design experience is outlined. Finally, thoughts on the need to further integrate academic and “work experience” requirements to become a professional engineer are presented.


Sign in / Sign up

Export Citation Format

Share Document