A low-profile high-performance crystal oscillator for timekeeping applications

Author(s):  
R.K. Karlquist ◽  
L.S. Cutler ◽  
E.M. Ingman ◽  
J.L. Johnson ◽  
T. Parisek
Author(s):  
Kaoru Kobayashi ◽  
Yoshiaki Mori ◽  
Tsukasa Kobata ◽  
Manabu Ito ◽  
Shigenori Watanabe ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shruti Vashist ◽  
M. K. Soni ◽  
P. K. Singhal

Rotman lenses are the beguiling devices used by the beamforming networks (BFNs). These lenses are generally used in the radar surveillance systems to see targets in multiple directions due to its multibeam capability without physically moving the antenna system. Now a days these lenses are being integrated into many radars and electronic warfare systems around the world. The antenna should be capable of producing multiple beams which can be steered without changing the orientation of the antenna. Microwave lenses are the one who support low-phase error, wideband, and wide-angle scanning. They are the true time delay (TTD) devices producing frequency independent beam steering. The emerging printed lenses in recent years have facilitated the advancement of designing high performance but low-profile, light-weight, and small-size and networks (BFNs). This paper will review and analyze various design concepts used over the years to improve the scanning capability of the lens developed by various researchers.


Author(s):  
Ángel Belenguer ◽  
Héctor Esteban ◽  
Alejandro L. Borja ◽  
José A. Ballesteros ◽  
Marcos Fernández ◽  
...  

10.1109/4.318 ◽  
1988 ◽  
Vol 23 (3) ◽  
pp. 774-783 ◽  
Author(s):  
E.A. Vittoz ◽  
M.G.R. Degrauwe ◽  
S. Bitz

Science ◽  
2018 ◽  
Vol 360 (6394) ◽  
pp. eaar5220 ◽  
Author(s):  
Swapan K. Roy ◽  
Vincent T. K. Sauer ◽  
Jocelyn N. Westwood-Bachman ◽  
Anandram Venkatasubramanian ◽  
Wayne K. Hiebert

Mechanical resonances are used in a wide variety of devices, from smartphone accelerometers to computer clocks and from wireless filters to atomic force microscopes. Frequency stability, a critical performance metric, is generally assumed to be tantamount to resonance quality factor (the inverse of the linewidth and of the damping). We show that the frequency stability of resonant nanomechanical sensors can be improved by lowering the quality factor. At high bandwidths, quality-factor reduction is completely mitigated by increases in signal-to-noise ratio. At low bandwidths, notably, increased damping leads to better stability and sensor resolution, with improvement proportional to damping. We confirm the findings by demonstrating temperature resolution of 60 microkelvin at 300-hertz bandwidth. These results open the door to high-performance ultrasensitive resonators in gaseous or liquid environments, single-cell nanocalorimetry, nanoscale gas chromatography, atmospheric-pressure nanoscale mass spectrometry, and new approaches in crystal oscillator stability.


Author(s):  
George Damoulakis ◽  
Mohamad Jafari-Gukeh ◽  
Theodore P. Koukoravas ◽  
Constantine Megaridis

Abstract The characterization "thermal diode" has been used to portray systems that spread heat very efficiently in a specific direction but obstruct it from flowing in the opposite direction. In this study, a planar vapor chamber with a wickless, wettability-patterned condenser is fabricated and tested as a thermal diode. When the chamber operates in the forward mode, heat is naturally driven away from the heat source; in the reverse mode, the system blocks heat backflow, thus working as a thermal diode. The low-profile assembly takes advantage of the phase-changing properties of water inside a closed loop comprised of a classical thin-wick evaporator opposing a wickless wettability-patterned condenser, when the chamber operates in the forward (heat-transporting) mode. The wettability patterned plate -when on the cooled side- enables spatial controlled dropwise and filmwise condensation and offers an efficient transport mechanism of the condensed medium on superhydrophilic wedge tracks by way of capillary forces. The same chamber acts as a thermal blocker when the opposing wick-covered plate is on the cool side, trapping the liquid in the pores and blocking heat flow. With this system, thermal diodicities exceeding 20 have been achieved, and are tunable by altering the wettability pattern as needed for different purposes. The present vapor chamber - thermal diode design could be well-suited for an extensive range of thermal-management applications, ranging from aerospace, spacecraft, and construction building materials, to electronics protection, electronics packaging, refrigeration, thermal control during energy harvesting, thermal isolation, etc.


Sign in / Sign up

Export Citation Format

Share Document