Precise two way time synchronization for distributed satellite system

Author(s):  
Li Gun ◽  
Huang Feijiang
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4882
Author(s):  
Yinghao Zhao ◽  
Letao Zhou ◽  
Wei Feng ◽  
Shaoguang Xu

Since the observation precision of the Global Navigation Satellite System (GNSS) carrier phase is on the order of millimeters, if the phase ambiguity is correctly solved, while calibrating the receiver inter-frequency bias, time synchronization on the order of tens of picoseconds is expected. In this contribution, a method that considers the prior constraints of the between-receiver inter-frequency bias (IFB) and its random variation characteristics is proposed for the estimation of the between-receiver clock difference, based on the uncombined GNSS carrier phase and pseudorange observations of the zero and short baselines. The proposed method can rapidly achieve the single-difference ambiguity resolution of the zero and short baselines, and then obtain the high-precision relative clock offset, by using only the carrier phase observations, along with the between-receiver IFBs being simultaneously determined. Our numerical tests, carried out using GNSS observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, show that the method can fix the between-receiver single-difference ambiguity successfully within an average of fewer than 2 epochs (interval 30 s). Then, a clock difference between two receivers with millimeter precision is obtained, achieving time synchronization on tens of picoseconds level, and deriving a frequency stability of 5 × 10−14 for averaging times of 30,000 s. Furthermore, the proposed approach is compared with the precise point positioning (PPP) time transfer method. The results show that, for different types of receivers, the agreement between the two methods is between −6.7 ns and 0.2 ns.


2019 ◽  
pp. 138-151
Author(s):  
Михаил Ефимович Ильченко ◽  
Теодор Николаевич Нарытник ◽  
Владимир Ильич Присяжный ◽  
Сергей Владимирович Капштык ◽  
Сергей Анатольевич Матвиенко

There are considered issues of building a Low-Earth-Orbit Satellite System designed to provide the Internet of Things services and adapted to the features of the services and systems of the Internet of Things. The considered system provides the creation of the necessary telecommunication infrastructure based on the Low-Earth-Orbit Broadband Access Satellite System and places Computational Facilities into the Low-Earth-Orbit for to ensure the processing of Internet of Things devices and systems information, and perform computations. The architecture of a “Distributed Satellite” was chosen to construct the telecommunications part of the Internets of Things Satellite System. The chosen architecture allows, on the one hand, to ensure the full functionality of complex telecommunication systems, and on the other hand, to use spacecraft of the form factor nano-satellite / cub-sat. The using of the cube-sat spacecraft for development of the satellite-based system allows to significantly reduce the cost of development of the system and the time of the system deploying. A promising direction in the development of the Internet of Things systems is the implementation of the concept of “Fog Computing” for processing Internet of Things information. To implement “Fog Computing”, it was proposed to include into the composition of each “Distributed Satellite” a separate Satellite-Computer and to build an Orbital Distributed Network based on Satellite-Computers. The issues of the inter-satellite connectivity are considered taking into account ensuring the connection between Satellites-Computers in the framework of the Orbital Distributed Computer Network using inter-satellite links between Distributed Satellites, the characteristics of the orbital construction of the Satellite System Constellation. It was proposed to create and deploy the Distributed Localized Database based on the Orbital Distributed Computer Network, for to ensure the continuous provision of Internet of Things services, taking into account the movement of spacecraft in the orbital plane and the rotation of the Earth. It was shown the direction of transmission of the operational part of a Localized Distributed Database. Proposals are made on the distribution of the excess computational load arising in certain regions of the satellite telecommunications system's service area, involving the resource of neighboring satellite computers in its orbital plane and neighboring orbital planes. An algorithm is proposed for moving the excess computational load to the polar and oceanic regions.


2018 ◽  
Vol 15 (8) ◽  
pp. 485-500 ◽  
Author(s):  
Nozomi Hitomi ◽  
Hyunseung Bang ◽  
Daniel Selva

Sign in / Sign up

Export Citation Format

Share Document