scholarly journals Robustness of Market-Based Task Allocation in a Distributed Satellite System

Author(s):  
Johannes van der Horst ◽  
Jason Noble ◽  
Adrian Tatnall
2019 ◽  
pp. 138-151
Author(s):  
Михаил Ефимович Ильченко ◽  
Теодор Николаевич Нарытник ◽  
Владимир Ильич Присяжный ◽  
Сергей Владимирович Капштык ◽  
Сергей Анатольевич Матвиенко

There are considered issues of building a Low-Earth-Orbit Satellite System designed to provide the Internet of Things services and adapted to the features of the services and systems of the Internet of Things. The considered system provides the creation of the necessary telecommunication infrastructure based on the Low-Earth-Orbit Broadband Access Satellite System and places Computational Facilities into the Low-Earth-Orbit for to ensure the processing of Internet of Things devices and systems information, and perform computations. The architecture of a “Distributed Satellite” was chosen to construct the telecommunications part of the Internets of Things Satellite System. The chosen architecture allows, on the one hand, to ensure the full functionality of complex telecommunication systems, and on the other hand, to use spacecraft of the form factor nano-satellite / cub-sat. The using of the cube-sat spacecraft for development of the satellite-based system allows to significantly reduce the cost of development of the system and the time of the system deploying. A promising direction in the development of the Internet of Things systems is the implementation of the concept of “Fog Computing” for processing Internet of Things information. To implement “Fog Computing”, it was proposed to include into the composition of each “Distributed Satellite” a separate Satellite-Computer and to build an Orbital Distributed Network based on Satellite-Computers. The issues of the inter-satellite connectivity are considered taking into account ensuring the connection between Satellites-Computers in the framework of the Orbital Distributed Computer Network using inter-satellite links between Distributed Satellites, the characteristics of the orbital construction of the Satellite System Constellation. It was proposed to create and deploy the Distributed Localized Database based on the Orbital Distributed Computer Network, for to ensure the continuous provision of Internet of Things services, taking into account the movement of spacecraft in the orbital plane and the rotation of the Earth. It was shown the direction of transmission of the operational part of a Localized Distributed Database. Proposals are made on the distribution of the excess computational load arising in certain regions of the satellite telecommunications system's service area, involving the resource of neighboring satellite computers in its orbital plane and neighboring orbital planes. An algorithm is proposed for moving the excess computational load to the polar and oceanic regions.


2018 ◽  
Vol 15 (8) ◽  
pp. 485-500 ◽  
Author(s):  
Nozomi Hitomi ◽  
Hyunseung Bang ◽  
Daniel Selva

2021 ◽  
Vol 2021 (4) ◽  
pp. 66-78
Author(s):  
E.O. Lapkhanov ◽  
◽  
O.S. Palii ◽  

The development and application of inflatable space structures is of considerable interest in modern space science and technology. Today, these structures enjoy wide application from aerodynamic inflatable deorbit means to inflatable residential sections for the International Space Station. This is because the masses of inflatable structures are smaller in comparison with others, which in turn minimizes the cost of their orbital injection. In view of the considerable interest in orbital constellations, the authors of this article propose the use of an inflatable space aerodynamic system as a platform for a payload. In doing so, we obtain a distributed satellite system on an inflatable space platform. The advantage of this technology is that it assures the maintenance of the relative position of the elements (payload) of a distributed satellite system of this type with minimal energy consumption. In its turn, to analyze the features of the operation of a particular space technology, its mathematical model is required. Because if this, the aim of the article is to develop a mathematical model for estimating the design parameters of an inflatable payload-bearing space platform. The mathematical model of the operation of an inflatable payload-bearing space platform developed in this work consists of three modules: a module of orbital motion, a module of calculation of the thermodynamic parameters of the inflatable platform, and a module of calculation of its variable inertia tensor. The article also identifies four gas modes of operation of the inflatable segment of the space platform and gives the inertia tensor as a function of the ambient temperature, which is necessary for further research. It should be noted that the application of the mathematical model allows a priori analysis of a wide range of inflatable space platform design parameters. On this basis, a design parameter analysis method that uses this model was developed. The application of this method may greatly simplify further research into the synthesis of an angular motion controller for an inflatable payload-bearing space platform, the choice of the design parameters of inflatable segment shell materials, and the study of the platform operation in different gas modes.


Sign in / Sign up

Export Citation Format

Share Document