Improved Heuristic Algorithms for UAVs Path Planning in Hazardous Environment

Author(s):  
Zhenghao Li ◽  
Peng Yang ◽  
Cen Tong ◽  
Jiaqi Shen
Author(s):  
R Fışkın ◽  
H Kişi ◽  
E Nasibov

The development of soft computing techniques in recent years has encouraged researchers to study on the path planning problem in ship collision avoidance. These techniques have widely been implemented in marine industry and technology-oriented novel solutions have been introduced. Various models, methods and techniques have been proposed to solve the mentioned path planning problem with the aim of preventing reoccurrence of the problem and thus strengthening marine safety as well as providing fuel consumption efficiency. The purpose of this study is to scrutinize the models, methods and technologies proposed to settle the path planning issue in ship collision avoidance. The study also aims to provide certain bibliometric information which develops a literature map of the related field. For this purpose, a thorough literature review has been carried out. The results of the study have pointedly showed that the artificial intelligence methods, fuzzy logic and heuristic algorithms have greatly been used by the researchers who are interested in the related field.


2018 ◽  
Vol Vol 160 (A2) ◽  
Author(s):  
R Fışkın ◽  
H Kişi ◽  
E Nasibov

The development of soft computing techniques in recent years has encouraged researchers to study on the path planning problem in ship collision avoidance. These techniques have widely been implemented in marine industry and technology-oriented novel solutions have been introduced. Various models, methods and techniques have been proposed to solve the mentioned path planning problem with the aim of preventing reoccurrence of the problem and thus strengthening marine safety as well as providing fuel consumption efficiency. The purpose of this study is to scrutinize the models, methods and technologies proposed to settle the path planning issue in ship collision avoidance. The study also aims to provide certain bibliometric information which develops a literature map of the related field. For this purpose, a thorough literature review has been carried out. The results of the study have pointedly showed that the artificial intelligence methods, fuzzy logic and heuristic algorithms have greatly been used by the researchers who are interested in the related field.


2015 ◽  
Vol 24 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Zhonghua Tang ◽  
Yongquan Zhou

AbstractUninhabited combat air vehicle (UCAV) path planning is a complicated, high-dimension optimization problem. To solve this problem, we present in this article an improved glowworm swarm optimization (GSO) algorithm based on the particle swarm optimization (PSO) algorithm, which we call the PGSO algorithm. In PGSO, the mechanism of a glowworm individual was modified via the individual generation mechanism of PSO. Meanwhile, to improve the presented algorithm’s convergence rate and computational accuracy, we reference the idea of parallel hybrid mutation and local search near the global optimal location. To prove the performance of the proposed algorithm, PGSO was compared with 10 other population-based optimization methods. The experiment results show that the proposed approach is more effective in UCAV path planning than most of the other meta-heuristic algorithms.


2021 ◽  
Author(s):  
Hao Lin

Efficient and accurate driving path planning can help drivers drive. To solve the problem of low efficiency of traditional heuristic algorithms such as PSO and GA in solving driving path planning, we introduce Excellence Coefficient into heuristic algorithms and make a parallel design based on Spark, which called EC-SPPSOGA. Excellence Coefficient can increase the probability of good edges being left, simultaneously, preserves the possibility of longer side being selected. The parallel design is based on time-consuming analysis of heuristic algorithms. We validate the performance of EC-SPPSOGA based on the data in TSPLIB. It is verified that the EC-SPPSOGA can improve efficiency of driving path planning and has good scalability.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1758 ◽  
Author(s):  
Qing Wu ◽  
Xudong Shen ◽  
Yuanzhe Jin ◽  
Zeyu Chen ◽  
Shuai Li ◽  
...  

Based on a bio-heuristic algorithm, this paper proposes a novel path planner called obstacle avoidance beetle antennae search (OABAS) algorithm, which is applied to the global path planning of unmanned aerial vehicles (UAVs). Compared with the previous bio-heuristic algorithms, the algorithm proposed in this paper has advantages of a wide search range and breakneck search speed, which resolves the contradictory requirements of the high computational complexity of the bio-heuristic algorithm and real-time path planning of UAVs. Besides, the constraints used by the proposed algorithm satisfy various characteristics of the path, such as shorter path length, maximum allowed turning angle, and obstacle avoidance. Ignoring the z-axis optimization by combining with the minimum threat surface (MTS), the resultant path meets the requirements of efficiency and safety. The effectiveness of the algorithm is substantiated by applying the proposed path planning algorithm on the UAVs. Moreover, comparisons with other existing algorithms further demonstrate the superiority of the proposed OABAS algorithm.


IJARCCE ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Saif Allah M. Abgenah ◽  
Azrul Amri Jamal

Sign in / Sign up

Export Citation Format

Share Document