Influence of Viewing Position by Changing Display Resolution and Display Size

Author(s):  
Reiko Koyama ◽  
Shinya Mochiduki ◽  
Mitsuho Yamada
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jeong Woo Kang ◽  
Yeoun Sook Chun ◽  
Nam Ju Moon

Abstract Background To evaluate the change of accommodation and ocular discomfort according to the display size, using quantitative measurements of accommodation and ocular discomfort through subjective and objective metrics. Methods Forty six subjects without any ophthalmic disease history were asked to watch the documentary movie, using two different sizes of smart devices; smartphones and tablets. Before and after using devices, the near point accommodation (NPA) and the near point convergence (NPC) were measured, and objective accommodation was measured using an auto refractometer/keratometer. The subjective ocular discomfort was assessed through a survey. Results Both devices showed a decrease in post-use NPA and NPC, and the change after use of the smartphone was significantly severe, 1.8 and 2.5 folds respectively, compared to tablet (p = 0.044, p = 0.033, respectively). Neither smartphone nor tablet showed significant changes in the accommodative response induced by dynamic accommodative stimulus of auto refractometer/keratometer (p = 0.240 and p = 0.199, respectively). Subjects showed a more severe increase in ocular discomfort after using smartphones (p = 0.035) and reported feeling tired even with shorter use times (p = 0.012). Conclusions Both devices showed significant decreases in NPA and NPC, and the larger changes were seen when using the small display smartphone. Even within 20minutes of using, subjects start to feel ocular discomfort, and it was more severe and faster after smartphones than tablets. Therefore, the smaller the display size, the greater the adverse impact on eyes, and thus, appropriate display size will need to be selected depending on the time and purpose of use.


Author(s):  
Terri Simmons

Answering that question through scientific study can strengthen a product's chances in the marketplace.


Author(s):  
Wenxuan Jia ◽  
Yuen-Shan Leung ◽  
Huachao Mao ◽  
Han Xu ◽  
Chi Zhou ◽  
...  

Abstract Microscale surface structures are commonly found on macroscale bodies of natural creatures for their unique functions. However, it is difficult to fabricate such multi-scale geometry with conventional stereolithography processes that rely on either laser or digital micromirror device (DMD). More specifically, the DMD-based mask projection method displays the image of a cross-section of the part on the resin to fabricate the entire layer efficiently; however, its display resolution is limited by the building area. In comparison, the laser-based vector scanning method builds smooth features using a focused laser beam with desired beam-width resolution; however, it has less throughput for its sequential nature. In this paper, we studied the hybrid-light-source stereolithography process that integrates both optical light sources to facilitate the fabrication of macro-objects with microscale surface structures (called micro-textures in the paper). The hardware system uses a novel calibration approach that ensures pixel-level dimensional accuracy across the two light sources. The software system enables designing the distribution and density of specific microscale textures on a macro-object by generating projection images and laser toolpaths for the two integrated light sources. Several test cases were fabricated to demonstrate the capability of the developed process. A large fabrication area (76.8 mm × 80.0 mm) with 50 μm micro-features can be achieved with a high throughput.


Sign in / Sign up

Export Citation Format

Share Document