The IEEE P1918.1 Reference Architecture Framework for the Tactile Internet and a Case Study

Author(s):  
Adnan Aijaz ◽  
Zaher Dawy ◽  
Nikolaos Pappas ◽  
Meryem Simsek ◽  
Sharief Oteafy ◽  
...  
2021 ◽  
Vol 13 (9) ◽  
pp. 4851
Author(s):  
Ming-Hui Liao ◽  
Chi-Tai Wang

The chemical industry has sustained the development of global economies by providing an astonishing variety of products and services, while also consuming massive amounts of raw materials and energy. Chemical firms are currently under tremendous pressure to become lean enterprises capable of executing not only traditional lean manufacturing practices but also emerging competing strategies of digitalization and sustainability. All of these are core competencies required for chemical firms to compete and thrive in future markets. Unfortunately, reports of successful transformation are so rare among chemical firms that acquiring the details of these cases would seem an almost impossible mission. The severe lack of knowledge about these business transformations thus provided a strong motivation for this research. Using The Open Group Architecture Framework, we performed an in-depth study on a real business transformation occurring at a major international chemical corporation, extracting the architecture framework possibly adopted by this firm to become a lean enterprise. This comprehensive case study resulted in two major contributions to the field of sustainable business transformation: (1) a custom lean enterprise architecture framework applicable to common chemical firms making a similar transformation, and (2) a lean enterprise model developed to assist chemical firms in comprehending the intricate and complicated dynamics between lean manufacturing, digitalization, and sustainability.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6672
Author(s):  
Rob Bemthuis ◽  
Maria-Eugenia Iacob ◽  
Paul Havinga

The sooner disruptive emergent behaviors are detected, the sooner preventive measures can be taken to ensure the resilience of business processes execution. Therefore, organizations need to prepare for emergent behaviors by embedding corrective control mechanisms, which help coordinate organization-wide behavior (and goals) with the behavior of local autonomous entities. Ongoing technological advances, brought by the Industry 4.0 and cyber-physical systems of systems paradigms, can support integration within complex enterprises, such as supply chains. In this paper, we propose a reference enterprise architecture for the detection and monitoring of emergent behaviors in enterprises. We focus on addressing the need for an adequate reaction to disruptions. Based on a systematic review of the literature on the topic of current architectural designs for understanding emergent behaviors, we distill architectural requirements. Our architecture is a hybrid as it combines distributed autonomous business logic (expressed in terms of simple business rules) and some central control mechanisms. We exemplify the instantiation and use of this architecture by means of a proof-of-concept implementation, using a multimodal logistics case study. The obtained results provide a basis for achieving supply chain resilience “by design”, i.e., through the design of coordination mechanisms that are well equipped to absorb and compensate for the effects of emergent disruptive behaviors.


10.1596/26006 ◽  
2017 ◽  
Author(s):  
Marc A. Le Pape ◽  
Juan Carlos Nunez Suarez ◽  
Abdelkader Mhayi ◽  
Dominic Haazen ◽  
Emre Ozaltin

Author(s):  
Kwansuk Oh ◽  
Jong Wook Lim ◽  
Seongwon Cho ◽  
Junyeol Ryu ◽  
Yoo S. Hong

AbstractVariety management is a cross-domain issue in product family design. In the real field, the relationships across the domains are so complex for most of the existing product families that they cannot be easily identified without proper reference architecture. This reference architecture should provide the cross- domain mapping mechanisms in an explicit manner and be able to identify the proper units for management. From this perspective of cross-domain framework, this paper introduces development architecture (DA) to describe the relationships between elements in market, design, and production domains and to give insights for the cross-domain variety management in the product development stage. DA has three parts: (1) the arrangement of elements in each domain, (2) the mapping between elements, and (3) the identification of management sets and key interfaces which are the proper units for variety management. The proposed development architecture framework is applied to the case of front chassis family of modules of an automobile.


2020 ◽  
Vol 12 (20) ◽  
pp. 8504
Author(s):  
Aleksey Dorofeev ◽  
Natalya Altukhova ◽  
Nadejda Filippova ◽  
Tatyana Pashkova ◽  
Mikhail Ponomarev

With the wide variety of information systems and applications for motor transport and transport logistics control we have today, one may think we are already living in the digital era of general welfare, and digital tools would easily ensure sustainable development and prosperity of businesses. However, the experience of deployment and introduction of such solutions shows that their value for transport business is significantly lower than expected. Moreover, in some projects, business performance of transport companies had no correlation with introduction of information systems. In the best-case scenario, they provided for a slight decrease in document flow transaction costs. The change of the strategic status of a company in the transportation service market is a fairly complicated task, which, as analysis of literary sources shows, is achievable for few enterprises, primarily small and medium-sized businesses. Such situations show that information solutions were introduced without analyzing or assessing the business models of certain companies which could be used a basis for digital landscape of business as a whole. In recent years, the basic concept of forming a single information space of an enterprise has been the enterprise architecture. It provided for coordination between all the business processes in order to achieve a company’s strategic goals. The fundamentals of the concept were developed by J. Zachman in his famous Zachman Framework, and it was later developed with numerous models of enterprise architecture (e.g., TOGAF (Department of Defense Architecture Framework), GERAM (Generalised Enterprise Reference Architecture and Methodology), DoDAF (Department of Defense Architecture Framework)). However, currently some researchers note that sustainable corporate development should stem not only from a “correct assembly” of all its business elements, which was the purpose of enterprise architecture, but also from the interaction of these elements when reaching the emergence effect. In this context, one should pay attention to comprehensive activity analysis of a transport and logistics business using ontological and architecture approaches.


2019 ◽  
Vol 15 ◽  
pp. 147-160 ◽  
Author(s):  
Matti Yli-Ojanperä ◽  
Seppo Sierla ◽  
Nikolaos Papakonstantinou ◽  
Valeriy Vyatkin

2018 ◽  
Vol 118 (1) ◽  
pp. 96-125 ◽  
Author(s):  
Mengru Tu ◽  
Ming K. Lim ◽  
Ming-Fang Yang

Purpose The purpose of this paper is threefold: to present internet of things (IoT)-based cyber-physical system (CPS) architecture framework to facilitate the integration of IoT and CPS; to implement an IoT-based CPS prototype based on the architecture framework for a PL application scenario of in a case study; and to devise evaluation methods and conduct experimental evaluations on an IoT-based CPS prototype. Design/methodology/approach The design research method, case study, emulation experiment method, and cost-benefit analysis are applied in this research. An IoT-based CPS architecture framework is proposed, and followed by the development of prototype system and testbed platform. Then, the emulation and experimental evaluation of IoT-based CPS are conducted on the testbed, and the experimental results are analyzed. Findings The emulation experiment results show that the proposed IoT-based CPS outperforms current barcode-based system regarding labor cost, efficiency, and operational adaptiveness. The evaluation of the IoT-based CPS prototype indicates significant improvements in PL tasks and reduced part inventory under a dynamic changing shop-floor environment. Practical implications The case study shows that the proposed architecture framework and prototype system can be applied to many discrete manufacturing industries, such as automobile, airplane, bicycle, home appliance, and electronics. Originality/value The proposed IoT-based CPS is among the first to address the need to integrate IoT and CPS for PL applications, and to conduct experimental evaluations and cost-benefit analysis of adopting IoT-based CPS for PL. This paper also contributes to the IoT research by using diverse research methods to offer broader insights into understanding IoT and CPS.


Sign in / Sign up

Export Citation Format

Share Document