A Comparison of Channel Coding Schemes for 5G Short Message Transmission

Author(s):  
Onurcan Iscan ◽  
Diego Lentner ◽  
Wen Xu
Author(s):  
Jung Hyun Bae ◽  
Ahmed Abotabl ◽  
Hsien-Ping Lin ◽  
Kee-Bong Song ◽  
Jungwon Lee

AbstractA 5G new radio cellular system is characterized by three main usage scenarios of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communications, which require improved throughput, latency, and reliability compared with a 4G system. This overview paper discusses key characteristics of 5G channel coding schemes which are mainly designed for the eMBB scenario as well as for partial support of the URLLC scenario focusing on low latency. Two capacity-achieving channel coding schemes of low-density parity-check (LDPC) codes and polar codes have been adopted for 5G where the former is for user data and the latter is for control information. As a coding scheme for data, 5G LDPC codes are designed to support high throughput, a variable code rate and length and hybrid automatic repeat request in addition to good error correcting capability. 5G polar codes, as a coding scheme for control, are designed to perform well with short block length while addressing a latency issue of successive cancellation decoding.


Author(s):  
XIANGBIN YU ◽  
GUANGGUO BI

Space-time block (STB) coding has been an effective transmit diversity technique for combating fading recently. In this paper, a full-rate and low-complexity STB coding scheme with complex orthogonal design for multiple antennas is proposed, and turbo code is employed as channel coding to improve the proposed code scheme performance further. Compared with full-diversity multiple antennas STB coding schemes, the proposed scheme can implement full data rate, partial diversity and a smaller complexity, and has more spatial redundancy information. Moreover, using the proposed scheme can form efficient spatial interleaving, thus performance loss due to partial diversity is effectively compensated by the concatenation of turbo coding. Simulation results show that on the condition of the same system throughput and concatenation of turbo code, the proposed scheme has lower bit error rate (BER) than those low-rate and full-diversity multiple antennas STB coding schemes.


2017 ◽  
Vol 6 (4) ◽  
pp. 116 ◽  
Author(s):  
Wessam Mostafa ◽  
Eman Mohamed ◽  
Abdelhalim Zekry

Long Term Evolution Advanced (LTE-A) is the evolution of the LTE that developed by 3rd Generation Partnership Project (3GPP).LTE-A exceeded International Telecommunication Union (ITU) requirements for 4th Generation (4G) known as International Mobile Telecommunications (IMT-Advanced). It is formally introduced in October 2009. This paper presents a study and an implementation of the LTE-A downlink physical layer based on 3GPP release 10 standards using Matlab simulink. In addition, it provides the LTE-A performance in terms of Bit Error Rate (BER) against Signal to Noise Ratio (SNR) for different modulation and channel coding schemes. Moreover, different scenarios of Carrier Aggregation (CA) are modeled and implemented. The Simulink model developed for the LTE-A transceiver can be translated into digital signal processor DSP code or VHDL on FPGA code.


2002 ◽  
Vol 14 (03) ◽  
pp. 109-114 ◽  
Author(s):  
REN-GUEY LEE ◽  
KUANG-CHIUNG CHANG

This paper presents an SMS based design in the GSM system for a portable, light weighted, and small sized TeleAlarm device. The device is composed of a transmitter and a controller. When an emergent situation such as a stroke or a fall occurs, the user only needs to push a button to trigger the controller. The controller automatically sends text messages stored in its database through the transmitter to specified mobile phone numbers for help. The SMS uses only the control channels in the GSM system to transfer the message, which enables the receiving-end user to receive it even during a call. An experimental test shows that a complete message transmission only needs 2.949 seconds in average. The design is convenient to elderly people who may live alone.


2012 ◽  
Vol 2 (2) ◽  
pp. 53-58
Author(s):  
Shaikh Enayet Ullah ◽  
Md. Golam Rashed ◽  
Most. Farjana Sharmin

In this paper, we made a comprehensive BER simulation study of a quasi- orthogonal space time block encoded (QO-STBC) multiple-input single output(MISO) system. The communication system under investigation has incorporated four digital modulations (QPSK, QAM, 16PSK and 16QAM) over an Additative White Gaussian Noise (AWGN) and Raleigh fading channels for three transmit and one receive antennas. In its FEC channel coding section, three schemes such as Cyclic, Reed-Solomon and ½-rated convolutionally encoding have been used. Under implementation of merely low complexity ML decoding based channel estimation and RSA cryptographic encoding /decoding algorithms, it is observable from conducted simulation test on encrypted text message transmission that the communication system with QAM digital modulation and ½-rated convolutionally encoding techniques is highly effective to combat inherent interferences under Raleigh fading and additive white Gaussian noise (AWGN) channels. It is also noticeable from the study that the retrieving performance of the communication system degrades with the lowering of the signal to noise ratio (SNR) and increasing in order of modulation.


Sign in / Sign up

Export Citation Format

Share Document