A Forest Fire Identification Method for Unmanned Aerial Vehicle Monitoring Video Images*

Author(s):  
Wenzhao Feng ◽  
Chunhe Hu ◽  
Junguo Zhang ◽  
Hao Yan
2016 ◽  
Vol 3 (1) ◽  
pp. 102-111
Author(s):  
Aleksandrs Urbahs ◽  
Rima Mickevičienė ◽  
Vasilij Djačkov ◽  
Kristīne Carjova ◽  
Valdas Jankūnas ◽  
...  

Abstract The paper gives brief description of the conventional and innovative hydrography survey methods and constraints connected with the realization. Proposed hydrographic survey system based on the use of Unmanned Aerial and Maritime systems provides functionality to conduct hydrographic measurements and environment monitoring. System can be easily adapted to fulfil marine safety and security operations, e.g. intrusion threat monitoring, hazardous pollutions monitoring and prevention operations, icing conditions monitoring.


2021 ◽  
pp. 1-1
Author(s):  
Huang Bohao ◽  
Feng Pingfa ◽  
Zhang Jianfu ◽  
Yu Dingwen ◽  
Wu Zhijun

2021 ◽  
Vol 3 (1) ◽  
pp. 106-113
Author(s):  
V Chyhin ◽  

The possibility of creating a computer control system for an unmanned aerial vehicle using remote cloud computing according to predefined scenarios from the user's desktop is investigated. For this, an experimental setup was created, which includes a quadcopter, a personal computer with the Windows operating system, an on-board computer Raspberry-3 with the Linux operating system, a Pi Camera V2 camcorder, and a Pixhawk autopilot. To model the control and transmission of video images the own control programs and photo pursuit on a computer Raspberry-3 in Python are recorded. Based on the obtained results, a model of unmanned aerial vehicle control from the desktop of the user's personal computer via the on-board computer without the use of a standard control panel and operator is proposed.


Sign in / Sign up

Export Citation Format

Share Document