Active Learning Approaches for Sustainable Energy Engineering Education

Author(s):  
Patricia Caratozzolo ◽  
Samuel Rosas-Melendez ◽  
Carlos Ortiz-Alvarado
2020 ◽  
Vol 12 (10) ◽  
pp. 3947 ◽  
Author(s):  
Izabela Simon Rampasso ◽  
Osvaldo L. G. Quelhas ◽  
Rosley Anholon ◽  
Marcio B. Pereira ◽  
Jocimar D. A. Miranda ◽  
...  

Considering the increasing importance of sustainability in future professionals’ education and the role played by engineers in society, this paper aims to analyze the key criteria that should be considered in models to evaluate the insertion level of sustainability into engineering education, considering the Brazilian context. For this, criteria reported in the literature were collected and evaluated by engineering professors. The respondents were asked to classify the criteria as “essential”, “useful, but not essential”, or “not necessary”. Data collected were analyzed through Lawshe’s method. From 15 criteria collected from the literature, 5 were not considered essential to evaluate engineering education for sustainable development (EESD), according to data analysis: C2 (establishment of global partnerships), C4 (encouraging students to volunteer through extracurricular activities), C9 (use of active learning approaches to problem solving to teach aspects related to sustainability), C10 (use of service-learning towards the local community for educational purposes) and C15 (use of sustainability concept in university installations). It was possible to verify that most of these criteria (C2, C4, C10, and C15) were not directly related to engineering curricula, being parallel activities. Regarding C9, active learning approaches can enhance attributes important for students in the context of sustainable development, but they are not goals of EESD. This research contributes to the development of evaluation models for engineering education in the Brazilian context and its findings can also be useful for studies in other countries. No similar study was found in the literature.


2016 ◽  
Vol 136 (10) ◽  
pp. 657-662
Author(s):  
Yoshihiro Masui ◽  
Tomomi Tanioka ◽  
Tetsuji Taniguchi ◽  
Masayuki Yamauchi ◽  
Tomoyuki Araki ◽  
...  

2018 ◽  
Author(s):  
Antoine Taly ◽  
Francesco Nitti ◽  
Marc Baaden ◽  
samuela pasquali

<div>We present here an interdisciplinary workshop on the subject of biomolecules offered to undergraduate and high-school students with the aim of boosting their interest toward all areas of science contributing to the study of life. The workshop involves Mathematics, Physics, Chemistry, Computer Science and Biology. Based on our own areas of research, molecular modeling is chosen as central axis as it involves all disciplines. In order to provide a strong biological motivation for the study of the dynamics of biomolecules, the theme of the workshop is the origin of life. </div><div>All sessions are built around active pedagogies, including games, and a final poster presentation.</div>


2021 ◽  
Author(s):  
Yeganeh Ghandriz ◽  
Seyed Mohamadreza Ziaiean Noorbakhsh ◽  
Roghayeh Gavagsaz-Ghoachani ◽  
Matheepot Phattanasak

2021 ◽  
Vol 69 (4) ◽  
pp. 297-306
Author(s):  
Julius Krause ◽  
Maurice Günder ◽  
Daniel Schulz ◽  
Robin Gruna

Abstract The selection of training data determines the quality of a chemometric calibration model. In order to cover the entire parameter space of known influencing parameters, an experimental design is usually created. Nevertheless, even with a carefully prepared Design of Experiment (DoE), redundant reference analyses are often performed during the analysis of agricultural products. Because the number of possible reference analyses is usually very limited, the presented active learning approaches are intended to provide a tool for better selection of training samples.


2015 ◽  
Vol 5 (2) ◽  
pp. 37 ◽  
Author(s):  
Andy M. Connor ◽  
Sangeeta Karmokar ◽  
Chris Whittington

This paper sets out to challenge the common pedagogies found in STEM (Science, Technology, Engineering and Mathematics) education with a particular focus on engineering. The dominant engineering pedagogy remains “chalk and talk”; despite research evidence that demonstrates its ineffectiveness. Such pedagogical approaches do not embrace the possibilities provided by more student-centric approaches and more active learning. The paper argues that there is a potential confusion in engineering education around the role of active learning approaches, and that the adoption of these approaches may be limited as a result of this confusion, combined with a degree of disciplinary egocentrism. The paper presents examples of design, engineering and technology projects that demonstrate the effectiveness of adopting pedagogies and delivery methods more usually attributed to the liberal arts such as studio based learning. The paper concludes with some suggestions about how best to create a fertile environment from which inquiry based learning can emerge as well as a reflection on whether the only real limitation on cultivating such approaches is the disciplinary egocentrism of traditional engineering educators.


Sign in / Sign up

Export Citation Format

Share Document