Exergy Analysis of the Combined Ejector - Vapor Compression Refrigeration System Using R134a as Working Fluid

Author(s):  
Kien-Trung Nguyen ◽  
Quoc-An Hoang ◽  
Hiep-Chi Le
2019 ◽  
Vol 9 (23) ◽  
pp. 5028 ◽  
Author(s):  
Pektezel ◽  
Acar

This paper presents energy and exergy analysis of two vapor compression refrigeration cycles powered by organic Rankine cycle. Refrigeration cycle of combined system was designed with single and dual evaporators. R134a, R1234ze(E), R227ea, and R600a fluids were used as working fluids in combined systems. Influences of different parameters such as evaporator, condenser, boiler temperatures, and turbine and compressor isentropic efficiencies on COPsys and ƞex,sys were analyzed. Second law efficiency, degree of thermodynamic perfection, exergy destruction rate, and exergy destruction ratio were detected for each component in systems. R600a was determined as the most efficient working fluid for proposed systems. Both COPsys and ƞex,sys of combined ORC-single evaporator VCR cycle was detected to be higher than the system with dual evaporator.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
A. B. Kasaeian ◽  
S. Daviran

In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω), compression ratio (rp) and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e) and R1234ze(z). The results show that R114 and R1234ze(e) yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e) for all operating conditions. This paper also demonstrates that R1234ze(e) will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω), nisbah mampatan (rp) dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e) dan R1234ze(z).Hasil kajian menunjukkan R114 dan R1234ze(e) menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e) bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e) boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor -wap solar, kerana ianya mempunyai prestasi yang lebih baik serta sifatnya yang lebih mesra alam sekitar. KEYWORDS: environmental friendly refrigerants; solar combined ejector-vapor compression cycle; R1234ze(e)


Author(s):  
Elena Eugenia Vasilescu ◽  
Michel Feidt ◽  
Rahal Boussehain ◽  
Alexandru Dobrovicescu

AbstractThis article presents the results obtained from an energy-exergy analysis of a vapor compression refrigeration system during induced transient regimes. Using experimental data, exergy destruction as a function of time under the influence of some factors that perturb the stationary regime, such as deactivation of piston, variation of mass flow rate and initial temperature of cooled fluid, and diminution of the compressor rotation speed, was calculated. Under the perturbation, an antagonistic increase in the coefficient of performance and a decrease in exergy efficiency were noted.


Author(s):  
V. Zhelezny ◽  
S. Korniievych ◽  
O. Khliyeva ◽  
D. Ivchenko

An investigation of the saturated vapor pressure for the solutions of propane in the two type of industrial compressor oils ProEco®RF22S and RENISO SP46, also as in oil ProEco®RF22S containing fullerene C60 6.837·10-4kg·kg-1is presented in this paper. The measurement of the saturated vapor pressure was conducted using a static method in a temperature range (273…333) K and thepropanemass fraction (0.11…0.595) kg·kg-1. An analysis revealed that the expanded uncertainties of the measured saturated vapor pressure do not exceed 0.0419·105Pafor solutionpropane/ProEco®RF22S,0.0716·105Pa for solution propane /RENISO SP46, and 0.0095·105Pa for solution propane/ProEco®RF22 Scontaining C60.The temperature and concentration dependences of the saturated vapor pressure for the object of study have been discussed. The excess of saturated vapor pressure for the solution of propane in oil ProEco®RF22S over the pressure of the solution of propane in oil RENISO SP46 reaches 1.5 105 Pa at a temperature of 330 K and propane fractionof 0.1 kg·kg-1. This effect decreases with temperature decreasing and propane fraction increasing.It was proven that the additive of the fullerene C60 increase the saturated vapor pressure of the solution propane/ProEco® RF22S up to 0.4·105Pa at low temperature and low propane mass fraction insolution. The results obtained proved the expediency of the introduction in the industry the solution of propane/compressor oil ProEco® RF22Scontaining the fullerene C60 as working fluid of vapor compression refrigeration system. The ability of C60additive in oil to increase the saturated vapor pressure of considered working fluid will contribute to increasing the energy efficiency of refrigeration systems.


2018 ◽  
Vol 136 (2) ◽  
pp. 857-872 ◽  
Author(s):  
Jatinder Gill ◽  
Jagdev Singh ◽  
Olayinka S. Ohunakin ◽  
Damola S. Adelekan

2014 ◽  
Vol 2 (2) ◽  
pp. 12-27
Author(s):  
Ahmed J. Hamad

     Experimental investigation of vapor compression refrigeration system performance using Nano-refrigerant is presented in this work. Nano-refrigerant was prepared in current work by mixing 50 nanometers diameter of copper oxide CuO nanoparticles with Polyolester lubrication oil and added to the compressor of the refrigeration system to be mixed with pure refrigerant R-134a during its circulation through refrigeration system. Three concentrations (0.1%, 0.25%, and 0.4%) of CuO-R134 a Nano-refrigerant are used to study the performance of the refrigeration system test rig and to investigate the effect of using Nano-refrigerant as a working fluid compared with pure refrigerant R-134a. The results showed that, the increasing in concentration of CuO nanoparticles in the Nano-refrigerant will significantly enhance the performance of the refrigeration system, as adding nanoparticles will increase the thermal conductivity, heat transfer and improve the thermo-physical properties of Nano-refrigerant. Investigation of performance parameters for refrigeration system using Nano-refrigerant with 0.4% concentration compared with that for pure refrigerant R-134a shows that, Nano-refrigerant has reflect higher performance in range of 10% and 1.5% increase in COP and refrigeration effect respectively and 7% reduction in power consumption for refrigeration system. It can be concluded that, Nano-refrigerants can be efficiently and economically feasible to be used in the vapor compression refrigeration systems.


2016 ◽  
Vol 24 (02) ◽  
pp. 1650009 ◽  
Author(s):  
Jahar Sarkar ◽  
Dnyanesh Joshi

The main purpose of this study is to apply advanced exergy analysis to the transcritical CO2 vapor compression refrigeration system, and compare with the analysis of subcritical cycle using ammonia and R404a. Endogenous, exogenous, avoidable and unavoidable exergy destructions are determined for each component of these systems. For CO2 system, compressor contributes highest avoidable endogenous exergy destruction and gas cooler contributes highest avoidable exogenous exergy destruction. It is concluded that compressor is the first component for CO2 and R404a, and evaporator is the first component for NH3 to be improved. System improvement options to reduce the exergy destruction are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document