A Comparison of Computed Torque Control and Sliding Mode Control for a Three Link Robot Manipulator

Author(s):  
Nirbhay Kumar Chaturvedi ◽  
L. B. Prasad
2008 ◽  
Vol 13 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Ha Quang Thinh Ngo ◽  
Jin-Ho Shin ◽  
Won-Ho Kim

Mechatronics ◽  
2022 ◽  
Vol 82 ◽  
pp. 102717
Author(s):  
Yongchao Wang ◽  
Zengjie Zhang ◽  
Cong Li ◽  
Martin Buss

2020 ◽  
Vol 26 (23-24) ◽  
pp. 2297-2315
Author(s):  
Valiollah Ghaffari

The proportional-derivative sliding-mode control will be designed and tuned in the trajectory tracking of a robot manipulator which operates on uncertain dynamic environments. For achieving these goals, first, a linear matrix inequality–based framework is suggested to design a robust proportional-derivative sliding-mode control in the presence of external disturbances. Next, the parameters of the proportional-derivative sliding-mode control law will be tuned via another minimization problem subjected to some linear matrix inequality constraints. Thus, the controller parameters can be automatically updated via the solution of the optimization problem. The results are successfully used in the robot manipulator with considering two reference paths and some different loads. The simulation results show the effectiveness of the proposed method in comparison with the same technique.


2019 ◽  
Vol 19 (08) ◽  
pp. 1940053
Author(s):  
SHUPENG ZHENG ◽  
XINJIAN NIU ◽  
CHENHUI PENG

In order to minimize the involuntary tremor of surgeon’s hands, the surgical robots are widely applied in the minimally invasive surgeries. However, unlike ordinary robots, the surgical robots require that the manipulator has high precision and strong anti-disturbance ability. Besides that, the manipulators of surgical robots must be able to move smoothly and respond quickly to the surgeon’s instructions during conducting tasks. To solve aforementioned problems, this paper describes a super-twisting sliding mode controller for the robot manipulator. The basic law is combined with the adaptive term to overcome the unknown disturbances and structural uncertainties, and with the prescribed performance allowing to influence the error dynamics. To ensure the robot system has good transient and steady-state performances, the transformation function of tracking errors is devised. Through using transformed errors, we attain the surface of sliding mode and propose a modified structure of traditional super-twisting algorithm. Considering the derivative of lumped disturbance has unknown boundary, a novel adaptive law is derived for the modified super-twisting sliding mode control which does not require the boundary of disturbance. Simulation experiments showed that the proposed control algorithm not only improves the tracking performance of surgical robot manipulators, but also facilitates the parameter tuning of controller. The devised robot manipulators are also potentially applicable to telesurgery where the steady-state response of surgical robots is required.


2015 ◽  
Vol 66 (3) ◽  
pp. 121-131 ◽  
Author(s):  
Youssef Errami ◽  
Mohammed Ouassaid ◽  
Mohamed Cherkaoui ◽  
Mohamed Maaroufi

Abstract This paper presents a Variable Structure Sliding Mode Control (VS-SMC) scheme and Direct Torque Control (DTC) for Wind Farm (WF) based on the Permanent Magnet Synchronous Generator (PMSG). The WF consists of a 3 PMSGs which are connected to a common dc bus system with rectifier. The dc-bus is connected to the electrical network using only one inverter system, a grid-side filter as well as the transformer. The efficiency of the WF can be greatly improved using an appropriate control approach. So, the control strategy uses the technique of DTC to regulate the speeds of PMSGs for Maximum Power Point Tracking (MPPT) mode. Besides, by employing VS-SMC the grid-side inverter is controlled to inject the generated power into the electrical network, to regulate DC-link voltage and to achieve Unity Power Factor. The used control strategies provide an optimal control solution for WF systems based on the PMSG.


Sign in / Sign up

Export Citation Format

Share Document