Array force display for hardness distribution

Author(s):  
H. Iwata ◽  
H. Yano ◽  
R. Kawamura
1991 ◽  
Vol 113 (4) ◽  
pp. 388-394 ◽  
Author(s):  
O. B. Fedoseev ◽  
S. Malkin

An analysis is presented to predict the hardness distribution in the subsurface of hardened steel due to tempering and rehardening associated with high temperatures generated in grinding. The grinding temperatures are modeled with a triangular heat source at the grinding zone and temperature-dependent thermal properties. The temperature history, including the effect of multiple grinding passes, is coupled with thermally activated reaction equations for tempering and for reaustenitization which is the rate controlling step in rehardening. Experimental results from the literature are found to be in good agreement with the analytical predictions.


The proposed article considers the possibility of using thermodiffusion surface doping to increase the durability of motor casings of construction-road machines. It is shown that the use of hardening allows to obtain a layer with a thickness of up to 3 mm. At the same time, the durability after repair stretching does not decrease due to the reverse hardness distribution in the reinforced layer. Keywords casings, hardening, durability, construction and road machines, repair, stretching


Author(s):  
Jerzy Barglik ◽  
Albert Smalcerz

Purpose Modeling of induction surface hardening strongly depends on accuracy of material properties data and their temperature characteristics. However, it is especially complicated in case of the magnetic permeability dependent not only on temperature but also on the magnetic strength. This paper aims to estimate the influence of the magnetic permeability on modeling of coupled physical fields describing the process. Investigations are provided for the gear wheels made of the steel C45E. Design/methodology/approach Computation of coupled electromagnetic temperature and hardness fields is based on FEM methods. The Flux 3D software is applied for the numerical simulation of coupled electromagnetic and temperature fields. The QT Steel software is applied for a determination of the hardness and microstructure distributions. Findings Obtained results may be used as a kind of background for the design of induction surface hardening systems. Research limitations/implications The presented calculation model provided quite a good accuracy of hardness distribution validated by the experiments. Next work in the field should be aimed at taking into account a dependence of the magnetic permeability on the field current frequency. Originality/value Mathematical model of induction surface hardening with taking into account time dependence on the magnetic permeability on temperature and magnetic strength is elaborated. Experimental validation of hardness distribution is provided. A quite reasonable convergence between simulations and measurements was achieved.


2011 ◽  
Vol 216 ◽  
pp. 397-401
Author(s):  
Hai Tao Wang ◽  
Bing Xi Huang ◽  
Li Jian Wang

The effects of vanadium microalloying on the hardness and its distribution of alloy ZG270-500 smelted in intermediate frequency induction furnace were studied. Vanadium microalloying increased the hardness of test alloys effectively. By scanning electron microscope (SEM) and energy disperse spectroscope (EDS) analysis, it was found that VC was the powerful heterogeneous nuclei, which prompted numerous nucleating, refined the structure grains and caused the serious crystallographic lattice distortion, so the hardness increased. Proper content of vanadium prompted more even hardness distribution across the whole temperature front section. However, overdoes vanadium microalloying easily caused mass oxides of V2O3, which kept solid phases with high meting point in metal liquid to increase the viscosity and decrease the fluidity of metal liquid, resulting in inadequate metal liquid feeding, serious structure shrinkage porosity in center and worse hardness distribution along the different isotherm fields. 0.16wt.% vanadium microalloying brought the optimal hardness uniformity among test alloys with the approximate 1 hardness ratio R between the center and the margin.


1995 ◽  
pp. 253-258 ◽  
Author(s):  
Katsunori Fujii ◽  
Takuso Sato ◽  
Keisuke Kameyama ◽  
Toshikazu Inoue ◽  
Katsunori Yokoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document