Virtual Power Quality Analyzer Emphasizing the Distortion Factor in Power Factor Calculation

Author(s):  
Malik Muhammad Zaid ◽  
Syed Muhammad Taqi Haider ◽  
Muhammad Sibtain ◽  
Muhammad Usama Malik
2009 ◽  
Vol 1 (1) ◽  
pp. 49-59
Author(s):  
Riza Widia ◽  
Herisajani Herisajani ◽  
Witrionanda Witrionanda

Loads of electricity utility consists of linear loads and non linear loads. The non linear loads for example TV, personal computer, VCD player, microwave and fluorescent lamp using electronics ballast. Loads with non linear characteristics become harmonic current source to electricity utility. Condition prediction used statistic linear comparison based on load power to THDi (Distortion of Harmonic Current). Measurement result using power quality analyzer and etap 4.0 (Fluke 43B) find typical THDi. The calculation and measurement result of PF and THD to loads of electricity utility show the differences less than 5%. However power factor formulation and distortions of harmonic current is valid


Author(s):  
Gunjan Varshney ◽  
Durg S. Chauhan ◽  
Madhukar P. Dave ◽  
Nitin

Background: In modern electrical power distribution systems, Power Quality has become an important concern due to the escalating use of automatic, microprocessor and microcontroller based end user applications. Methods: In this paper, power quality improvement has done using Photovoltaic based Distribution Static Compensator (PV-DSTATCOM). Complete simulation modelling and control of Photovoltaic based Distribution Static Compensator have been provided in the presented paper. In this configuration, DSTATCOM is fed by solar photovoltaic array and PV module is also helpful to maintain the DC link voltage. The switching of PV-STATCOM is controlled by Unit template based control theory. Results: The performance of PV-DSTATCOM has been evaluated for Unity Power Factor (UPF) and AC Voltage Control (ACVC) modes. Here, for studying the power quality issues three-phase distribution system is considered and results have been verified through simulation based on MATLAB software. Conclusion: Different power quality issues and their improvement are studied and presented here for harmonic reduction, DC voltage regulation and power factor correction.


Author(s):  
Michal Jasinski ◽  
Tomasz Sikorski ◽  
Dominika Kaczorowska ◽  
Pawel Kostyla ◽  
Zbigniew Leonowicz ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 641
Author(s):  
Michał Jasiński

Analysis of the connection between different units that operate in the same area assures always interesting results. During this investigation, the concerned area was a virtual power plant (VPP) that operates in Poland. The main distributed resources included in the VPP are a 1.25 MW hydropower plant and an associated 0.5 MW energy storage system. The mentioned VPP was a source of synchronic, long-term, multipoint power quality (PQ) data. Then, for five related measurement points, the conclusion about the relation in point of PQ was performed using correlation analysis, the global index approach, and cluster analysis. Global indicators were applied in place of PQ parameters to reduce the amount of analyzed data and to check the correlation between phase values. For such a big dataset, the occurrence of outliers is certain, and outliers may affect the correlation results. Thus, to find and exclude them, cluster analysis (k-means algorithm, Chebyshev distance) was applied. Finally, the correlation between PQ global indicators of different measurement points was performed. It assured general information about VPP units’ relation in point of PQ. Under the investigation, both Pearson’s and Spearman’s rank correlation coefficients were considered.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7510
Author(s):  
Akinyemi Ayodeji Stephen ◽  
Kabeya Musasa ◽  
Innocent Ewean Davidson

Renewable Distributed Generation (RDG), when connected to a Distribution Network (DN), suffers from power quality issues because of the distorted currents drawn from the loads connected to the network over generation of active power injection at the Point of Common Coupling (PCC). This research paper presents the voltage rise regulation strategy at the PCC to enhance power quality and continuous operation of RDG, such as Photovoltaic Arrays (PVAs) connected to a DN. If the PCC voltage is not regulated, the penetration levels of the renewable energy integration to a DN will be limited or may be ultimately disconnected in the case of a voltage rise issue. The network is maintained in both unity power factor and voltage regulation mode, depending on the condition of the voltage fluctuation occurrences at the PCC. The research investigation shows that variation in the consumer’s loads (reduction) causes an increase in the power generated from the PVA, resulting in an increase in the grid current amplitude, reduction in the voltage of the feeder impedance and an increase in the phase voltage amplitude at the PCC. When the system is undergoing unity power factor mode, PCC voltage amplitude tends to rises with the loads. Its phase voltage amplitude rises above an acceptable range with no-loads which are not in agreement, as specified in the IEEE-1547 and Southern Africa grid code prerequisite. Incremental Conduction with Integral Regulator bases (IC + PI) are employed to access and regulate PVA generation, while the unwanted grid current distortions are attenuated from the network using an in-loop second order integral filtering circuit algorithm. Hence, the voltage rise at the PCC is mitigated through the generation of positive reactive power to the grid from the Distribution Static Compensator (DSTATCOM), thereby regulating the phase voltage. The simulation study is carried out in a MATLAB/Simulink environment for PVA performance.


Author(s):  
Florin-Ciprian Argatu ◽  
Vlad Brezoianu ◽  
Violeta Vasilica Argatu ◽  
Bogdan-Adrian Enache ◽  
Felix-Constantin Adochiei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document