Unit Template Based Control of PV-DSTATCOM

Author(s):  
Gunjan Varshney ◽  
Durg S. Chauhan ◽  
Madhukar P. Dave ◽  
Nitin

Background: In modern electrical power distribution systems, Power Quality has become an important concern due to the escalating use of automatic, microprocessor and microcontroller based end user applications. Methods: In this paper, power quality improvement has done using Photovoltaic based Distribution Static Compensator (PV-DSTATCOM). Complete simulation modelling and control of Photovoltaic based Distribution Static Compensator have been provided in the presented paper. In this configuration, DSTATCOM is fed by solar photovoltaic array and PV module is also helpful to maintain the DC link voltage. The switching of PV-STATCOM is controlled by Unit template based control theory. Results: The performance of PV-DSTATCOM has been evaluated for Unity Power Factor (UPF) and AC Voltage Control (ACVC) modes. Here, for studying the power quality issues three-phase distribution system is considered and results have been verified through simulation based on MATLAB software. Conclusion: Different power quality issues and their improvement are studied and presented here for harmonic reduction, DC voltage regulation and power factor correction.

2015 ◽  
Vol 16 (4) ◽  
pp. 357-384 ◽  
Author(s):  
Suresh Mikkili ◽  
Anup Kumar Panda

Abstract Electrical power quality has been an important and growing problem because of the proliferation of nonlinear loads such as power electronic converters in typical power distribution systems in recent years. Particularly, voltage harmonics and power distribution equipment problems result from current harmonics produced by nonlinear loads. The Electronic equipment like, computers, battery chargers, electronic ballasts, variable frequency drives, and switch mode power supplies, generate perilous harmonics and cause enormous economic loss every year. Problems caused by power quality have great adverse economic impact on the utilities and customers. Due to that both power suppliers and power consumers are concerned about the power quality problems and compensation techniques. Power quality has become more and more serious with each passing day. As a result active power filter gains much more attention due to excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) ac power networks with nonlinear loads. However, this is still a technology under development, and many new contributions and new control topologies have been reported in the last few years. It is aimed at providing a broad perspective on the status of APF technology to the researchers and application engineers dealing with power quality issues.


Author(s):  
V. Lakshmi Devi ◽  
T. Phanindra

Electrical distribution system suffers from various problems like reactive power burden, unbalanced loading, voltage regulation and harmonic distortion. Though DSTATCOMS are ideal solutions for such systems, they are not popular because of the cost and complexity of control involved. Phase wise balanced reactive power compensations are required for fast changing loads needing dynamic power factor correcting devices leading to terminal voltage stabilization. Static Var Compensators (SVCs) remain ideal choice for such loads in practice due to low cost and simple control strategy. These SVCs, while correcting power factor, inject harmonics into the lines causing serious concerns about quality of the distribution line supplies at PCC. This paper proposes to minimize the harmonics injected into the distribution systems by the operation of TSC-TCR type SVC used in conjunction with fast changing loads at LV distribution level. Fuzzy logic system and ANN are going to be used solve this nonlinear problem, giving optimum triggering delay angles used to trigger switches in TCR. The scheme with Artificial Neural Network (ANN) is attractive and can be used at distribution level where load harmonics are within limits. Verification of the system and by using mat lab / simulink with proper modeling.


2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Raton Kumar Nondy ◽  
Md. Abul Bashar ◽  
Prema Nondy ◽  
M. Hazrat Ali

The conventional power frequency (50 or 60 Hz) transformers are economical, highly reliable and quite efficient but they suffer with certain drawbacks like sensitive to harmonics, voltage drop under load, no protection from system disruptions and overloads, poor performance under dc offset load unbalances and no scope to improve power factor. These transformers with copper wound wires on iron cores are unable to respond to control signals as power generations become distributed and intermittent. So, the need of electronic based regulated power supply with software based remote intelligence has become essential. Also, to easily connect the new energy sources to the grid and to improve the power quality by harmonic filtering, voltage sag correction and highly dynamic control of the power flow, a new type of transformer based on power electronics, known as SST has been introduced. The SST realizes voltage transformation, galvanic isolation, power quality improvements such as instantaneous voltage regulation, voltage sag compensation and power factor correction. It is a collection of high-powered semiconductor components, high frequency power transformer and control circuitry which is used to provide a high level of flexible control to power distribution networks. The SST is a high frequency switched Power Electronic Devices (PEDs) based transformer with high controllability that enables flexible connectivity between existing medium voltage power distribution network, low voltage AC residential system and envisioned DC residential system. In this paper a systematic constructional detail of a SST with a power rating of 2 kVA, operating frequency of 20 kHz and voltage rating of 600/60 V as a scaled-down prototype used for power converter topologies is presented. The design is simple and it avoids the difficulty of choosing massive amounts of empirical parameters.


The Indian economy has been growing at a fast pace since the beginning of this millennium. Due to constraints in the availability of fuel and environmental concerns, the power generation sector has not kept pace with other industrial sectors. One way of increasing the power availability is by reducing the high losses in the existing power transmission and distribution systems. The current increases in the motor windings when the voltages in the three phases are unbalanced. Compensation for reactive power and unbalance in the power distribution system are key factors in improving the power quality to the end user. A Distributed Static Compensator [DSTATCOM] is a custom power device, which is connected in shunt with the load in the distribution system to compensate the reactive power due unbalanced loads. The performance of the DSTATCOM is based on the control technique used for finding the voltage referred and current components to be considered. Voltage compensation is defined as the error in voltage in the grid and that the value of voltage that has to be induced in the grid. This is analyzed by using DSTATCOM for voltage compensation with series converter controller block. This paper gives the simulation of voltage compensation to rectify the issue of voltage swell/sag in order to improve the power quality in the distribution system.


Author(s):  
Jasti Venkata Ramesh Babu ◽  
Malligunta Kiran Kumar

Power quality is one big issue in power system and a big challenge for power engineers today. Electrical consumers (or otherwise load devices) expect electrical power received power should be of first-class. Bad quality in electrical power directs to fuse blowing, machine overheating, increase in distribution losses, damage to sensitive load devices and many more. DSTATCOM is one of the FACTS controllers designed to improve the quality in electrical power and thus improving the performance of distribution system. This paper presents a multilevel DSTATCOM topology to enhance power quality in power distribution system delivering high-quality power to the customer load devices. Diode-clamped structure is employed for multi-level DSTATCOM structure. ‘PQ’ based control strategy generates reference signal which is further processed through level-shifted multi-carrier PWM strategy for the generation of gate pulses to multi-level DSTATCOM structure. Simulation work of proposed system is developed and the result analysis is presented using MATLAB/SIMULINK software. Performance of multi-level DSTATCOM topology is verified with fixed and variable loads.


Author(s):  
May Phone Thit

Nowadays, power quality is one of the major problems in electric power distribution system. The poor power quality at distribution level can affect the operation and performance of sensitive and critical loads. In the distribution systems, poor power quality results in various problems such as higher power losses, harmonics, sag and swells in the voltage, and poor power factor., etc. Unified Power Quality Conditioner (UPQC) is the only versatile device which can mitigate several power quality problems related with distribution system. A UPQC that combines the operations of a Distribution Static Compensator (D-STATCOM) and Dynamic Voltage Restorer (DVR) together with the shunt and series active control devices. UPQC can solve the problems related to the voltage/current harmonics, voltage sag/swell and unbalance in distribution system. To evaluate the performance improvement in the system, a model of UPQC is developed in MATLAB/SIMULINK with a typical distribution network. In this research, UPQC is applied for power quality enhancement of Myaungtagar industrial distribution substation, Myanmar. Enhancements in power quality by UPQC are evaluated under maximum load condition.Keywords—Power Quality, UPQC, Series Controller, Shunt controller, Harmonics


2010 ◽  
Vol 61 (4) ◽  
pp. 193-204 ◽  
Author(s):  
Reza Noroozian ◽  
Mehrdad Abedi ◽  
Gevorg Gharehpetian

Combined Operation of AC and DC Distribution System with Distributed Generation Units This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1202
Author(s):  
Krzysztof Piatek ◽  
Andrzej Firlit ◽  
Krzysztof Chmielowiec ◽  
Mateusz Dutka ◽  
Szymon Barczentewicz ◽  
...  

Quality of power supply in power distribution systems requires continuous measurement using power quality analyzers installed in the grid. The paper reviews the published methods for optimal location of metering points in distribution systems in the context of power quality metering and assessment. Three methods have been selected for detailed analysis and comparative tests. It has been found that utilization of the methods is possible, but their performance varies highly depending on the test grid’s topology. Since the methods rely on the state estimation approach, their performance is strictly related to observability analysis. It has been found that standard observability analysis used for typical state estimation problem yields ambiguous results when applied to power quality assessment. Inherited properties of the selected methods are also analyzed, which allows for the formulation of general recommendations about optimal selection of metering points in a distribution system.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Malaika Imran ◽  
Muhammad Shoaib Saleem ◽  
Aun Haider ◽  
Zain Iftikhar

In power distribution systems of many countries, service lines are directly connected to the consumer meters without any load management system. Conventional meters lack in internal power quality measurement, and utility also cannot measure the power factor and other values during the month. This study aims to design a smart kit that aids conventional single-phase energy meters and calculates the power values of all phases by measuring the voltage, current, and power factor on the load side; and the calculated power values will be sent to the cloud data base Voltage and current are measured by a current transformer (CT) and a potential transformer (PT) connected on both the incoming side and the load side in order to avoid meter bypassing. A program-based algorithm has also been developed to calculate the power factor and other power quantities. This IoT-based energy meter uploads the measured quantities to an online database, and the same are also displayed on an LCD meter. An Android™-based application is also developed for user-end control. Consumers can observe the resultant values, switch loads remotely, and pay electricity bills through the same application. When the power factor of any consumer is less than the standard value, the system will automatically notify utility company about the affecting load.


Sign in / Sign up

Export Citation Format

Share Document