A tactile system for informing the blind on direction of a walk

Author(s):  
Adam Bujnowski ◽  
Maciej Drozd ◽  
Ryszard Kowalik ◽  
Jerzy Wtorek
Keyword(s):  
2017 ◽  
Author(s):  
Charlie W. Zhao ◽  
Mark J. Daley ◽  
J. Andrew Pruszynski

AbstractFirst-order tactile neurons have spatially complex receptive fields. Here we use machine learning tools to show that such complexity arises for a wide range of training sets and network architectures, and benefits network performance, especially on more difficult tasks and in the presence of noise. Our work suggests that spatially complex receptive fields are normatively good given the biological constraints of the tactile periphery.


2020 ◽  
Author(s):  
Laura Crucianelli ◽  
Benedetta Demartini ◽  
Diana Goeta ◽  
Veronica Nisticò ◽  
Alkistis Saramandi ◽  
...  

AbstractDisruptions in reward processing and anhedonia have long being considered as possible contributors to the aetiology and maintenance of Anorexia nervosa (AN). Recently, interoceptive deficits have also been observed in AN, including reduced tactile pleasure. However, the extent to which this tactile anhedonia is specifically liked to an impairment in a specialized, interoceptive C tactile system originating at the periphery, or a more top-down mechanism in the processing of pleasant tactile stimuli remains debated. Here, we investigated two related hypotheses. First, we examined whether the differences, between patients with AN and healthy controls in the perception of pleasantness of touch stimuli delivered in a CT-optimal manner versus a CT non-optimal manner would also be observed in patients recovered from AN. This is important as tactile anhedonia in acute patients may be the secondary result of prolonged malnutrition, rather than a deficit that contributed to the development of the disorder. Second, we examined whether these three groups would also differ in their top-down, anticipatory beliefs about the perceived pleasantness of different materials touching the skin, and to what degree such top-down beliefs and related impairments in alexithymia and interoceptive sensibility would explain any differences in perceived tactile plesantness. To this end, we measured the anticipated pleasantness of various materials touching the skin and the perceived pleasantness of light, dynamic stroking touches applied to the forearm of 27 women with AN, 24 women who have recovered and 30 healthy controls using C Tactile (CT) afferents-optimal (slow) and non-optimal (fast) velocities. Our results showed that both clinical groups anticipated tactile experiences and rated delivered tactile stimuli as less pleasant than healthy controls, but the latter difference was not related to the CT optimality of the stimulation. Instead, differences in how CT optimal touch were perceived were predicted by differences in top-down beliefs, alexithymia and interoceptive sensibility. Thus, this study concludes that tactile anhedonia in AN is not the secondary result of malnutrition but persists as a trait even after otherwise successful recovery of AN and also it not linked to a bottom-up interoceptive deficit in the CT system, but rather to a learned, defective top-down anticipation of pleasant tactile experiences.


1959 ◽  
Vol 36 (3) ◽  
pp. 501-511
Author(s):  
M. J. WELLS

1. Octopuses blinded by section of the optic nerves were trained by means of 5-10 V. a.c. shocks to reject objects that they would otherwise take. 2. With trials at 3, 5, or 20 min. intervals, in which the test object was always presented to the same arm, animals learned within four or five trials, thereafter rejecting the test object whenever it was presented. 3. When, after a succession of such negative responses, the object was presented to another arm on the other side of the octopus, the result depended upon the rate of training before the change. Thus the object was taken in the trial immediately following the arm change in nineteen out of twenty-six sets of tests with trials at 3 or 5 min. intervals, but in only two out of twelve sets with trials at 20 min. intervals; further experiments in which changes were made between arms on the same side produced similar results. 4. These results are interpreted as showing that changes occurring as a result of experience directly affecting one arm take a period of several hours to spread and become effective in determining the reactions of the rest. This in turn implies the existence of functionally independent neurone fields representing the individual arms, and is discussed in relation to what is already known about the organization of the tactile system of the octopus.


Author(s):  
Shad B. Smith ◽  
Jefrey S. Mogil
Keyword(s):  

2000 ◽  
Vol 84 (3) ◽  
pp. 1430-1444 ◽  
Author(s):  
Heather E. Wheat ◽  
Antony W. Goodwin

The aim of this study was to determine the acuity of the peripheral tactile system for gaps and to determine how stimulus orientation may impact on this. We quantified the ability of humans to discriminate small differences in gap width using a forced-choice task. Stimuli were presented passively to the distal fingerpad in a region where the skin ridges all run approximately in the same direction. Two standard gap widths were used (2 and 2.9 mm), and the comparison gap widths were larger than the standard gaps. With the gap axis parallel to the skin ridges, the average difference limen was approximately 0.2 mm for both standards. We examined the effect of stimulus orientation by asking subjects to discriminate between a smooth surface and a grating (ridge width, 1.5 mm; groove width, 0.75 mm). They were able to discriminate the two surfaces when the axis of the grooves was parallel to the skin ridges, but performance was below threshold in the orthogonal orientation. The underlying neural mechanisms were investigated using the gap stimuli to activate single slowly adapting type I mechanoreceptive afferents (SAIs) innervating the fingerpads of anesthetized monkeys. The edges of the gap produced response peaks, and the gap resulted in a trough in the receptive field profiles. The response magnitude at the peaks was greater, and at the troughs was smaller, for larger gap widths and also when the axis of the gap was parallel to the skin ridges as compared with the orthogonal orientation. Simulated SAI population responses showed that response profiles were distorted by variation in afferent sensitivity and by neural noise. Using signal detection theory, based on a neural measure of the gaps computed over the active population, the acuity of the SAIs under realistic population conditions was compared with human performance. These analyses showed how parameters like afferent sensitivity, the pattern and density of innervation, and noise impact on performance and why their impact is different for the two stimulus orientations investigated. The greatest limitation was imposed by noise that is independent of response magnitude, and this effect was greater for stimuli oriented orthogonal to the skin ridges than for the parallel orientation.


Although much is known about the structural organization and connexions of the various lobes of the octopus brain from light microscopy, this is the first attempt at a detailed analysis of one of the lobes— the vertical lobe, with the electron microscope. The vertical lobe consists of five lobules. The median superior frontal (MSF) axons enter each lobule from the MSF lobe. The MSF axons contain both microtubules and neurofilaments. The varicosities of the MSF axons contain both agranular and dense-cored vesicles and synapse with trunks of the amacrine cells. These trunks run together in bundles termed amacrine tracts into the centres of the lobules. The amacrine trunks contain microtubules but no neurofilaments. The trunks contain large and small agranular synaptic vesicles and synapse with what are in all probability branches of the trunks of the large cells. These trunks contain microtubules but no neurofilaments. They run out through the bases of the lobules probably without forming synaptic contacts within the lobule. Fibres signalling ‘pain’ (nocifensor) enter the lobules from below. They can be recognized by their content of neurofilaments. Their terminals contain numerous very small synaptic vesicles and a few larger and dense-cored ones. These ‘pain’ fibres appear to synapse mostly with processes of the large cells. J. Z. Young has shown that the vertical lobe is especially concerned with the integrative action of the visual system, linked with the chemo-tactile system. Electron microscopy supports Young’s suggestion that the superior frontal and interconnected vertical lobe systems constitute a loop which could sustain a positive feed-back mechanism (MSF —> amacrine -> large cell -> lateral superior frontal -> MSF) while the ‘pain’ (nocifensor) input could exert a suppressor (inhibitory) effect on the loop by its action on the large cells.


2011 ◽  
Vol 31 (48) ◽  
pp. 17603-17611 ◽  
Author(s):  
T. Yoshioka ◽  
J. C. Craig ◽  
G. C. Beck ◽  
S. S. Hsiao

2015 ◽  
Vol 13 (2) ◽  
pp. 236-245
Author(s):  
Alessandro Mansutti ◽  
Mario Covarrubias Rodriguez ◽  
Giandomenico Caruso ◽  
Monica Bordegoni ◽  
Umberto Cugini

Sign in / Sign up

Export Citation Format

Share Document