scholarly journals NimbRo-OP2X: Adult-Sized Open-Source 3D Printed Humanoid Robot

Author(s):  
Grzegorz Ficht ◽  
Hafez Farazi ◽  
Andre Brandenburger ◽  
Diego Rodriguez ◽  
Dmytro Pavlichenko ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


2020 ◽  
Vol 17 (03) ◽  
pp. 2050010
Author(s):  
Saeed Saeedvand ◽  
Hadi S. Aghdasi ◽  
Jacky Baltes

Although there are several popular and capable humanoid robot designs available in the kid-size range, they lack some important characteristics: affordability, being user-friendly, using a wide-angle camera, sufficient computational resources for advanced AI algorithms, and mechanical robustness and stability are the most important ones. Recent advances in 3D printer technology enables researchers to move from model to physical implementation relatively easy. Therefore, we introduce a novel fully 3D printed open platform humanoid robot design named ARC. In this paper, we discuss the mechanical structure and software architecture. We show the capabilities of the ARC design in a series of experimental evaluations.


2018 ◽  
Vol 273 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Y.K. JAWALE ◽  
U. RAPOL ◽  
C.A. ATHALE
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
pp. 75-80
Author(s):  
Neeraj Kulkarni ◽  
Siddhi Patil ◽  
Arunkumar Kashyap ◽  
Shreeprasad Manohar

2018 ◽  
Vol 65 (5) ◽  
pp. 412-419 ◽  
Author(s):  
Claudia R. Cutler ◽  
Anita L. Hamilton ◽  
Emma Hough ◽  
Cheyenne M. Baines ◽  
Ross A. Clark

2020 ◽  
Vol 18 (05) ◽  
pp. 907-913
Author(s):  
J. Costa ◽  
T. Machado ◽  
M. Carneiro
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael R. Behrens ◽  
Haley C. Fuller ◽  
Emily R. Swist ◽  
Jingwen Wu ◽  
Md. Mydul Islam ◽  
...  

2020 ◽  
Vol 17 (05) ◽  
pp. 2050021
Author(s):  
Grzegorz Ficht ◽  
Hafez Farazi ◽  
Diego Rodriguez ◽  
Dmytro Pavlichenko ◽  
Philipp Allgeuer ◽  
...  

For several years, high development and production costs of humanoid robots restricted researchers interested in working in the field. To overcome this problem, several research groups have opted to work with simulated or smaller robots, whose acquisition costs are significantly lower. However, due to scale differences and imperfect simulation replicability, results may not be directly reproducible on real, adult-sized robots. In this paper, we present the NimbRo-OP2X, a capable and affordable adult-sized humanoid platform aiming to significantly lower the entry barrier for humanoid robot research. With a height of 135[Formula: see text]cm and weight of only 19[Formula: see text]kg, the robot can interact in an unmodified, human environment without special safety equipment. Modularity in hardware and software allows this platform enough flexibility to operate in different scenarios and applications with minimal effort. The robot is equipped with an on-board computer with GPU, which enables the implementation of state-of-the-art approaches for object detection and human perception demanded by areas such as manipulation and human–robot interaction. Finally, the capabilities of the NimbRo-OP2X, especially in terms of locomotion stability and visual perception, are evaluated. This includes the performance at RoboCup 2018, where NimbRo-OP2X won all possible awards in the AdultSize class.


Sign in / Sign up

Export Citation Format

Share Document