Understand Human Walking Through a 2D Inverted Pendulum Model

Author(s):  
Linqi Ye ◽  
Xuechao Chen
2019 ◽  
Vol 16 (157) ◽  
pp. 20190027 ◽  
Author(s):  
Varun Joshi ◽  
Manoj Srinivasan

Humans can walk without falling despite some external perturbations, but the control mechanisms by which this stability is achieved have not been fully characterized. While numerous walking simulations and robots have been constructed, no full-state walking controller for even a simple model of walking has been derived from human walking data. Here, to construct such a feedback controller, we applied thousands of unforeseen perturbations to subjects walking on a treadmill and collected data describing their recovery to normal walking. Using these data, we derived a linear controller to make the classical inverted pendulum model of walking respond to perturbations like a human. The walking model consists of a point-mass with two massless legs and can be controlled only through the appropriate placement of the foot and the push-off impulse applied along the trailing leg. We derived how this foot placement and push-off impulse are modulated in response to upper-body perturbations in various directions. This feedback-controlled biped recovers from perturbations in a manner qualitatively similar to human recovery. The biped can recover from perturbations over twenty times larger than deviations experienced during normal walking and the biped’s stability is robust to uncertainties, specifically, large changes in body and feedback parameters.


1999 ◽  
Vol 354 (1385) ◽  
pp. 869-875 ◽  
Author(s):  
E. Otten

The balance of standing humans is usually explained by the inverted pendulum model. The subject invokes a horizontal ground–reaction force in this model and controls it by changing the location of the centre of pressure under the foot or feet. In experiments I showed that humans are able to stand on a ridge of only a few millimetres wide on one foot for a few minutes. In the present paper I investigate whether the inverted pendulum model is able to explain this achievement. I found that the centre of mass of the subjects sways beyond the surface of support, rendering the inverted pendulum model inadequate. Using inverse simulations of the dynamics of the human body, I found that hip–joint moments of the stance leg are used to vary the horizontal component of the ground–reaction force. This force brings the centre of mass back over the surface of support. The subjects generate moments of force at the hip–joint of the swing leg, at the shoulder–joints and at the neck. These moments work in conjunction with a hip strategy of the stance leg to limit the angular acceleration of the head–arm–trunk complex. The synchrony of the variation in moments suggests that subjects use a motor programme rather than long latency reflexes.


2018 ◽  
Vol 8 (8) ◽  
pp. 1257 ◽  
Author(s):  
Tianqi Yang ◽  
Weimin Zhang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Libo Meng ◽  
...  

The most important feature of this paper is to transform the complex motion of robot turning into a simple translational motion, thus simplifying the dynamic model. Compared with the method that generates a center of mass (COM) trajectory directly by the inverted pendulum model, this method is more precise. The non-inertial reference is introduced in the turning walk. This method can translate the turning walk into a straight-line walk when the inertial forces act on the robot. The dynamics of the robot model, called linear inverted pendulum (LIP), are changed and improved dynamics are derived to make them apply to the turning walk model. Then, we expend the new LIP model and control the zero moment point (ZMP) to guarantee the stability of the unstable parts of this model in order to generate a stable COM trajectory. We present simulation results for the improved LIP dynamics and verify the stability of the robot turning.


Author(s):  
Haoyu Ren ◽  
Qimin Li ◽  
Bing Liu ◽  
Zhenhuan Dou

High acceleration and extreme load are frequently appeared on high-speed locomotion of legged robot’s legs, imposing a challenging trade-off between weight and torque in leg design. This paper proposes a new design paradigm based on cable-drive and elastic linkage to solve the problem. The details of the design procedure are given, including the construction of the single leg. With the optimum design of the linkage mechanism, a combined index of the workspace and tracking error are used as object function, and taking geometrical design parameters of the linkage as optimization parameters. Based on the target workspace and the spring-loaded inverted pendulum model, the best foot trajectory in obstacle climbing and trotting gait are analyzed and illustrated. This paper built linkage cable-drive spring robot based on the legged module integration. Simulations and experiments indicate that linkage cable-drive spring robot performs stable trotting with control of the spring-loaded inverted pendulum model. Linkage cable-drive spring robot prototype experiments results are provided to verify the validity of the new method.


Sign in / Sign up

Export Citation Format

Share Document