Thermal Characterization of Electrical Resistance of 3D printed sensors

Author(s):  
Mattia Alessandro Ragolia ◽  
Attilio di Nisio ◽  
Anna Maria Lanzolla ◽  
Gianluca Percoco ◽  
Marco Scarpetta ◽  
...  
2005 ◽  
Vol 128 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Y. Yang ◽  
R. M. White ◽  
M. Asheghi

Giant magnetoresistance (GMR) head technology is one of the latest advancements in the hard disk drive (HDD) storage industry. The GMR head multilayer structure consists of alternating layers of extremely thin metallic ferromagnetic and nonmagnetic films. A large decrease in the electrical resistivity from antiparallel to parallel alignment of the film magnetizations is observed, known as the GMR effect. The present work characterizes the in-plane electrical and thermal conductivities of Cu∕CoFe GMR multilayer structures in the temperature range of 50K to 340K using Joule-heating and electrical resistance thermometry on suspended bridges. The thermal conductivity of the GMR layer monotonically increases from 25Wm−1K−1 (at 55K) to nearly 50Wm−1K−1 (at room temperature). We also report a GMR ratio of 17% and a large magnetothermal resistance effect (GMTR) of 25% in the Cu∕CoFe multilayer structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Waseem S. Khan ◽  
Ramazan Asmatulu ◽  
Mohamed M. Eltabey

Polyvinylpyrrolidone (PVP) solutions incorporated with multiwall carbon nanotubes (MWCNTs) were electrospun at various weight percentages, and then the electrical resistance and some thermal properties of these nanocomposite fibers were determined using a high-accuracy electrical resistance measurement device. During the electrospinning process, system and process parameters, such as concentrations, applied voltage, tip-to-collector distance, and pump speeds, were optimized to receive the consistent nanocomposite fibers. When polymers are used in many industrial applications, they require high electrical and thermal conductivities. Most polymers exhibit low electrical conductivity values; however, in the presence of conductive inclusions, the electrical resistance of the MWCNT fibers was reduced from 50 MΩ to below 5 MΩ, which may be attributed to the higher electrical conductivities of these nanoscale inclusions and fewer voids under the applied loads. This study may open up new possibilities in the field for developing electrically conductive novel nanomaterials and devices for various scientific and technological applications.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 18799-18810 ◽  
Author(s):  
Kazi Md Masum Billah ◽  
Jose L. Coronel ◽  
Michael C. Halbig ◽  
Ryan B. Wicker ◽  
David Espalin

2019 ◽  
Vol 1249 ◽  
pp. 012001
Author(s):  
Alessandro Bonanomi ◽  
Emanuele Zappa ◽  
Alfredo Cigada ◽  
Valentina Zega ◽  
Alberto Corigliano

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6324
Author(s):  
Mattia Alessandro Ragolia ◽  
Anna M. L. Lanzolla ◽  
Gianluca Percoco ◽  
Gianni Stano ◽  
Attilio Di Nisio

In this paper a new low-cost stretchable coplanar capacitive sensor for liquid level sensing is presented. It has been 3D-printed by employing commercial thermoplastic polyurethane (TPU) and conductive materials and using a fused filament fabrication (FFF) process for monolithic fabrication. The sensor presents high linearity and good repeatability when measuring sunflower oil level. Experiments were performed to analyse the behaviour of the developed sensor when applying bending stimuli, in order to verify its flexibility, and a thermal characterization was performed in the temperature range from 10 °C to 40 °C to evaluate its effect on sunflower oil level measurement. The experimental results showed negligible sensitivity of the sensor to bending stimuli, whereas the thermal characterization produced a model describing the relationship between capacitance, temperature, and oil level, allowing temperature compensation in oil level measurement. The different temperature cycles allowed to quantify the main sources of uncertainty, and their effect on level measurement was evaluated.


1999 ◽  
Vol 6 (1) ◽  
pp. 101-108 ◽  
Author(s):  
E. Delacre ◽  
D. Defer ◽  
E. Antczak ◽  
B. Duthoit

2005 ◽  
Vol 125 ◽  
pp. 177-180
Author(s):  
T. Lopez ◽  
M. Picquart ◽  
G. Aguirre ◽  
Y. Freile ◽  
D. H. Aguilar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document