scholarly journals Thermal Characterization of New 3D-Printed Bendable, Coplanar Capacitive Sensors

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6324
Author(s):  
Mattia Alessandro Ragolia ◽  
Anna M. L. Lanzolla ◽  
Gianluca Percoco ◽  
Gianni Stano ◽  
Attilio Di Nisio

In this paper a new low-cost stretchable coplanar capacitive sensor for liquid level sensing is presented. It has been 3D-printed by employing commercial thermoplastic polyurethane (TPU) and conductive materials and using a fused filament fabrication (FFF) process for monolithic fabrication. The sensor presents high linearity and good repeatability when measuring sunflower oil level. Experiments were performed to analyse the behaviour of the developed sensor when applying bending stimuli, in order to verify its flexibility, and a thermal characterization was performed in the temperature range from 10 °C to 40 °C to evaluate its effect on sunflower oil level measurement. The experimental results showed negligible sensitivity of the sensor to bending stimuli, whereas the thermal characterization produced a model describing the relationship between capacitance, temperature, and oil level, allowing temperature compensation in oil level measurement. The different temperature cycles allowed to quantify the main sources of uncertainty, and their effect on level measurement was evaluated.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 861
Author(s):  
Ali Abdallah ◽  
Manfred Pauritsch ◽  
Christian Gasser ◽  
Florian Stangl ◽  
Matthias Primas ◽  
...  

A three dimensional, additively manufactured interdigital capacitive sensor for fluid level measurement applications is introduced. The device was fabricated using the fused filament fabrication (FFF) additive manufacturing (AM) process and an off the shelf conductive filament with a volume resistivity ρ = 0.6 Ω cm. The 3D fabrication process allows great flexibility in terms of sensor ̇ design and an increase of the surface area between the electrodes, compensating the relatively large plate separation and yielding a high sensitivity to increasing fluid levels. The measurements presented in this abstract show the average increase of capacitance in response to an incrementally increasing volume of de-ionized water (DI-water) filled between the separate digits.


2005 ◽  
Vol 16 (9) ◽  
pp. 1833-1840 ◽  
Author(s):  
S Jorez ◽  
J Laconte ◽  
A Cornet ◽  
J-P Raskin

2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2021 ◽  
Author(s):  
Budi Arifvianto ◽  
Teguh Nur Iman ◽  
Benidiktus Tulung Prayoga ◽  
Rini Dharmastiti ◽  
Urip Agus Salim ◽  
...  

Abstract Fused filament fabrication (FFF) has become one of the most popular, practical, and low-cost additive manufacturing techniques for fabricating geometrically-complex thermoplastic polyurethane (TPU) elastomer. However, there are still some uncertainties concerning the relationship between several operating parameters applied in this technique and the mechanical properties of the processed material. In this research, the influences of extruder temperature and raster orientation on the mechanical properties of the FFF-processed TPU elastomer were studied. A series of uniaxial tensile tests was carried out to determine tensile strength, strain, and elastic modulus of TPU elastomer that had been printed with various extruder temperatures, i.e., 190–230 °C, and raster angles, i.e., 0–90°. Thermal and chemical characterizations were also conducted to support the analysis in this research. The results obviously showed the ductile and elastic characteristics of the FFF-processed TPU, with specific tensile strength and strain that could reach up to 39 MPa and 600%, respectively. The failure mechanisms operating on the FFF-processed TPU and the result of stress analysis by using the developed Mohr’s circle are also discussed in this paper. In conclusion, the extrusion temperature of 200 °C and raster angle of 0° could be preferred to be applied in the FFF process to achieve high strength and ductile TPU elastomer.


BioTechniques ◽  
2021 ◽  
Author(s):  
Vedika J Shenoy ◽  
Chelsea ER Edwards ◽  
Matthew E Helgeson ◽  
Megan T Valentine

3D printing holds potential as a faster, cheaper alternative compared with traditional photolithography for the fabrication of microfluidic devices by replica molding. However, the influence of printing resolution and quality on device design and performance has yet to receive detailed study. Here, we investigate the use of 3D-printed molds to create staggered herringbone mixers (SHMs) with feature sizes ranging from ∼100 to 500 μm. We provide guidelines for printer calibration to ensure accurate printing at these length scales and quantify the impacts of print variability on SHM performance. We show that SHMs produced by 3D printing generate well-mixed output streams across devices with variable heights and defects, demonstrating that 3D printing is suitable and advantageous for low-cost, high-throughput SHM manufacturing.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3585 ◽  
Author(s):  
Pisana Placidi ◽  
Laura Gasperini ◽  
Alessandro Grassi ◽  
Manuela Cecconi ◽  
Andrea Scorzoni

The rapid development and wide application of the IoT (Internet of Things) has pushed toward the improvement of current practices in greenhouse technology and agriculture in general, through automation and informatization. The experimental and accurate determination of soil moisture is a matter of great importance in different scientific fields, such as agronomy, soil physics, geology, hydraulics, and soil mechanics. This paper focuses on the experimental characterization of a commercial low-cost “capacitive” coplanar soil moisture sensor that can be housed in distributed nodes for IoT applications. It is shown that at least for a well-defined type of soil with a constant solid matter to volume ratio, this type of capacitive sensor yields a reliable relationship between output voltage and gravimetric water content.


Author(s):  
E. Dohmen ◽  
A. Saloum ◽  
J. Abel

The utilization of ‘smart’ materials with adaptable properties or characteristics are a widespread research issue, offering potential for tailored solutions, weight reduction or added value of products through integrated functionality. Therefore, field controlled hybrid materials such as magnetorheological (MR) elastomers or electrorheological (ER) fluids are particularly valuable and within the focus of science and research. At the same time, additive manufacturing has had a strong influence on production processes over the past decade. Today a 3D printer can be found across all disciplines in almost every company, research institution and even in many private households. The Fused Filament Fabrication (FFF) process is especially popular due to its low cost and simplicity. Within this work, a new approach for the generation of field-structured magnetic elastomers using the FFF process and a correspondingly developed prototype print head for implementation are presented and discussed. With its unique research landscape Dresden offers excellent conditions for the development of innovative processes and composite materials in the field of generative manufacture. In the ‘Dresden Concept’ network, experts from various disciplines collaborate and investigate the entire spectrum starting from biological materials, through lightweight fibre reinforced polymer composites, to high-temperature ceramics. This article is part of the theme issue ‘Patterns in soft and biological matters’.


Author(s):  
Mattia Alessandro Ragolia ◽  
Attilio di Nisio ◽  
Anna Maria Lanzolla ◽  
Gianluca Percoco ◽  
Marco Scarpetta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document