Analysis of soil moisture detection using ground penetrating radar

Author(s):  
R. Mardeni ◽  
N. N. Ahmad ◽  
C.W. Yap
2019 ◽  
Vol 436 (1-2) ◽  
pp. 623-639 ◽  
Author(s):  
Xinbo Liu ◽  
Xihong Cui ◽  
Li Guo ◽  
Jin Chen ◽  
Wentao Li ◽  
...  

Geosciences ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 238
Author(s):  
Kenta Iwasaki ◽  
Makoto Tamura ◽  
Hirokazu Sato ◽  
Kazuhiko Masaka ◽  
Daisuke Oka ◽  
...  

The development of a method to easily investigate the spatial distribution of soil moisture and soil hardness in tree windbreaks is necessary because these windbreaks often decline due to inappropriate soil moisture condition and soil compaction. This research examined the applicability of ground-penetrating radar (GPR) and a combined penetrometer–moisture probe (CPMP) for evaluating the spatial distribution of soil moisture and soil hardness in four windbreaks with different soil characteristics. A GPR-reflecting interface was observed at a less permeable layer in a coastal windbreak and at a depth affected by soil compaction in an inland windbreak with andosol. The spatial distribution of the groundwater table could also be evaluated by examining the attenuation of GPR reflection in a coastal windbreak. In contrast, GPR was not applicable in an inland windbreak with peat because of high soil water content near the soil surface. The CPMP could detect vertical distributions of soil hardness and soil water content regardless of soil type. The CPMP was useful for interpreting GPR profiles, and GPR was useful for interpolating the information about the horizontal distribution of soil moisture and soil hardness between survey points made with the CPMP. Thus, the combination of GPR and a CPMP is ideal for examining the two-dimensional spatial distribution of soil moisture and soil hardness at windbreaks with soils for which both methods are applicable.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 492
Author(s):  
Brunela Pollastrelli Rodrigues ◽  
Christopher Adam Senalik ◽  
Xi Wu ◽  
James Wacker

This paper is a review of published studies involving the use of ground penetrating radar (GPR) on wood structures. It also contains background information to help the reader understand how GPR functions. The use of GPR on wood structures began to grow in popularity at the turn of the millennium. GPR has many characteristics that make it attractive as an inspection tool for wood: it is faster than many acoustic and stress wave techniques; it does not require the use of a couplant; while it can also detect the presence of moisture. Moisture detection is of prime concern, and several researchers have labored to measure internal moisture using GPR. While there have been several laboratory studies involving the use of GPR on wood, its use as an inspection tool on large wood structures has been limited. This review identified knowledge gaps that need to be addressed to improve the efficacy of GPR as a reliable inspection tool of wood structure. Chief among these gaps, is the ability to distinguish the type of internal feature from the GPR output and the ability to identify internal decay.


2010 ◽  
Vol 4 (3) ◽  
pp. 269-283 ◽  
Author(s):  
U. Wollschläger ◽  
H. Gerhards ◽  
Q. Yu ◽  
K. Roth

Abstract. Multi-channel ground-penetrating radar (GPR) was applied at a permafrost site on the Tibetan Plateau to investigate the influence of surface properties and soil texture on the late-summer thaw depth and average soil moisture content of the active layer. Measurements were conducted on an approximately 85 × 60 m2 sized area with surface and soil textural properties that ranged from medium to coarse textured bare soil to finer textured, sparsely vegetated areas covered with fine, wind blown sand, and it included the bed of a gravel road. The survey allowed a clear differentiation of the various units. It showed (i) a shallow thaw depth and low average soil moisture content below the sand-covered, vegetated area, (ii) an intermediate thaw depth and high average soil moisture content along the gravel road, and (iii) an intermediate to deep thaw depth and low to intermediate average soil moisture content in the bare soil terrain. From our measurements, we found hypotheses for the permafrost processes at this site leading to the observed late-summer thaw depth and soil moisture conditions. The study clearly indicates the complicated interactions between surface and subsurface state variables and processes in this environment. Multi-channel GPR is an operational technology to efficiently study such a system at scales varying from a few meters to a few kilometers.


2018 ◽  
Vol 32 (8) ◽  
pp. 2213-2231
Author(s):  
Jie Bao ◽  
Zhangshuan Hou ◽  
Jaideep Ray ◽  
Maoyi Huang ◽  
Laura Swiler ◽  
...  

Heritage ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Pier Barone ◽  
Carlotta Ferrara

Moisture damage is the most critical issue regarding the preservation and integrity of cultural heritage sites. The electromagnetic (EM) sensitivity to the presence of moisture, in both soils and structural materials, is a well-known phenomenon. Thereby, studying the EM response to the presence of moisture, in order to prevent the damages done to sites of cultural heritage, is a well-established method. This paper will discuss the ability of a geophysical non-destructive technique (NDT), present in a Ground Penetrating Radar (GPR) system, to investigate a very precious building in Rome that is affected by a moisture problem (the Turkish Room at Villa Medici). This geophysical instrument is able to locate and estimate the extent of water ingression, which can aid in the development of restoration plans before permanent damage occurs. The main objective of this paper is to help restorers understand the related hazards, due to the presence of moisture in the wall structures, in real-time and to rapidly and non-invasively develop strategies for the preservation of cultural heritage sites.


2002 ◽  
pp. 303-308
Author(s):  
J. S. Igel ◽  
H. R. Anschütz ◽  
J. Schmalholz ◽  
H. Wilhelm ◽  
W. Breh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document