Experimental results for a pulsed vortex water wall high-pressure argon lamp

Author(s):  
D. Kouroussis ◽  
R. Bonert ◽  
F.P. Dawson
2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3623-3625 ◽  
Author(s):  
K. Amaya ◽  
K. Shimizu ◽  
M. I. Eremets

Techniques of producing ultra-high pressure at very low temperature and measuring method of electrical resistance and magnetization of samples confirmed in the used diamond anvil ceil (DAC) are shortly described. Experimental results on simple molecular systems such as iodine, sulfur, oxygen and organic iodanil are reviewed as typical example of pressure induced superconductivity.


1977 ◽  
Vol 32 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Marlis F. Mirbach ◽  
Manfred J. Mirbach ◽  
Alfons Saus

The photochemical cycloaddition of 1,3-cyclohexadiene (CHD) to ethylene and acetylene at pressures above 10 bar is described. Upon sensitized irradiation (2-acetylnaphthaline) CHD adds to ethylene at room temperature in dichloromethane to give cis-bicyclo[4,2,0]-oct-2-ene (1) along with dimers of cyclohexadiene. The yield of cross adduct increases with ethylene pressure (10-50 bar) whereas dimerisation decreases. Quantum yields of cross addition and dimerisation at 12 M ethylene were determined to be 0.31 and 0.35 respectively. At a pressure of 15 bar acetylene CHD reacts with acetylene to give bicyclo-[4,2,0]octa-2,7-diene (2) and bicyclo[2,2,2]octa-2,5-diene (3) as the major and minor products respectively. In a solvent mixture containing 60 vol-% CH2Cl2 and 40 vol-% acetone (2) is formed with a quantum yield of φ = 0.2. The experimental results are explained by a formal kinetic scheme.


1993 ◽  
Vol 07 (27) ◽  
pp. 4555-4593 ◽  
Author(s):  
J. CRAIN

Recent advances in the understanding of pressure-induced structural and electronic effects in semiconductors have been made possible through developments in both experimental and computational physics. It is shown that the A N B 8−N compounds which include the tetrahedrally coordinated III–V semiconductors exhibit a far richer degree of pressure-induced structural polymorphism than was originally believed. In addition, entirely new factors such as defects, short-range order and irreversibility have been identified as playing potentially important roles in the high pressure behavior of semiconductors. The experimental results are reviewed and discussed in the context of models which are amenable to investigation by modern theoretical and computational methods.


Author(s):  
V. Kanchana ◽  
G. Vaitheeswaran ◽  
A. Svane ◽  
S. Heathman ◽  
L. Gerward ◽  
...  

The high-pressure structural behaviour of a series of binary thorium compounds ThX(X= C, N, P, As, Sb, Bi, S, Se, Te) is studied using the all-electron full potential linear muffin-tin orbital (FP-LMTO) method within the generalized gradient approximation (GGA) for the exchange and correlation potential. The calculated equlibrium lattice parameters and bulk moduli, as well as the equations of state agree well with experimental results. New experiments are reported for ThBi and ThN. Calculations are performed for the ThXcompounds in the NaCl- and CsCl-type crystal structures, and structural phase transitions from NaCl to CsCl are found in ThP, ThAs, ThSb and ThSe at pressures of 26.1, 22.1, 8.1 and 23.2 GPa, respectively, in excellent agreement with experimental results. ThC, ThN and ThS are found to be stable in the NaCl structure, and ThBi and ThTe in the CsCl structure, for pressures below 50 GPa. The electronic structures of the ThXcompounds are studied using the quasiparticle self-consistentGWmethod (G: Green function,W: dynamically screened interaction).


Author(s):  
F Bakhtar ◽  
K Zidi

The paper describes the results of an experimental investigation of limiting supersaturation in high-pressure steam. It follows an earlier investigation and to avoid the uncertainties associated with leakage past sliding profiles, the test section has been redesigned and the measurements taken with fixed nozzles. Three convergent-divergent nozzles with nominal rates of expansion of 3000, 5000 and 10000 per second have been used and the inlet stagnation pressures cover the range 25–35 bar. The data consist mainly of axial pressure distributions but some droplet measurements have also been recorded.


Author(s):  
Minel J. Braun ◽  
Hazel M. Pierson ◽  
Hongmin Li

Finger seals (FS) are compliant seal configurations. Unlike brush seals, they exhibit hydrodynamic lifting capabilities which allow non-contact sealing between stationary and rotating members. The compliance combined with the non-contacting feature allows both axial and radial adjustment of the seal to the rotor excursions without endangering the integrity of the former. The embodiment of a two-layer finger seal with high pressure (1c) and low pressure (1b) laminates is shown in Figure1. In this paper we shall analyze the thermo-hydraulic and mechanical performance (axial and radial deformations and displacements) of a representative repetitive cell that contains four high pressure and four low-pressure fingers arranged axially in a staggered configuration, and subject to rotation and an axial pressure drop. We shall also present experimental results pertaining to the seal deformation under axial pressure differential and rotation.


Sign in / Sign up

Export Citation Format

Share Document