scholarly journals Comparison of Experimental and Numerical Transient Drop Deformation during Transition through Orifices in High-Pressure Homogenizers

2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.

Author(s):  
David S. Whyte ◽  
Steven Carnie ◽  
Malcolm Davidson

A numerical study of droplet deformation in a high-pressure homogeniser is presented. This work is an attempt to identify flow criteria responsible for droplet break-up in a homogeniser used to produce dispersions for the manufacture of photographic paper. The main goal of this study is to recommend changes to homogeniser flow & geometry, operating conditions or fluid properties that will enhance droplet break-up. Laminar elongation, turbulent stresses within the orifice and downstream turbulence and cavitation have been suggested as possible mechanisms within the homogeniser for droplet rupture. Results for simulations, using a combination of homogeniser and droplet scale computation indicate that droplets are unaffected by local extensional flow or turbulent fluctuations and that other mechanisms must be responsible for droplet break-up.


2013 ◽  
Vol 724-725 ◽  
pp. 1176-1180 ◽  
Author(s):  
Hui Shen ◽  
Yong Gang Yu

In order to understand the burning rate of AP/HTPB propellant of the base bleed unit, the p-t curves of combustion of AP/HTPB base bleed propellant are measured in the closed bomb. The burning rate formula of the propellant under 50-200MPa is obtained by fitting to the experimental results. Based on division zone combustion theory, a simplified model of the burning rate of AP/HTPB base bleed propellant under high pressure is established. The calculation results and the experimental results are in good agreement.


2017 ◽  
Vol 11 (1) ◽  
pp. 17-32
Author(s):  
J. M. Benjumea ◽  
J. Sánchez-Oneto ◽  
J. R. Portela ◽  
E. J. Martínez de la Ossa

Background:The use of backpressure regulator valves is widespread in high-pressure processes both at laboratory and pilot plant scales, but being a single step for effluent depressurization, such valves may have some limitations at industrial scale. In an effort to improve the depressurization step, this work studies a system based on the pressure drop of a fluid that circulates through coiled pipes.Method:The equipment, based on three series of variable length coiled pipes, was installed to achieve depressurization of 240 bars in a SCWO pilot plant.Results:The experimental results were compared with those obtained by the modeling carried out using different friction factor correlations from the literature.Conclusion:Among all the correlations tested, the Lockhart–Martinelli correlation showed the best agreement with experimental data. However, it was necessary to obtain an appropriate C parameter to achieve a good agreement with experimental data.


Author(s):  
Mark G. Turner ◽  
Paul H. Vitt ◽  
David A. Topp ◽  
Sohrab Saeidi ◽  
Scott D. Hunter ◽  
...  

The average passage approach has been used to analyze three multistage configurations of the GE90 turbine. These are a high pressure turbine rig, a low pressure turbine rig and a full turbine configuration comprising 18 blade rows of the GE90 engine at takeoff conditions. Cooling flows in the high pressure turbine have been simulated using source terms. This is the first time a dual-spool cooled turbine has been analyzed in 3D using a multistage approach. There is good agreement between the simulations and experimental results. Multistage and component interaction effects are also presented. The parallel efficiency of the code is excellent at 87.3% using 121 processors on an SGI Origin for the 18 blade row configuration. The accuracy and efficiency of the calculation now allow it to be effectively used in a design environment so that multistage effects can be accounted for in turbine design.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 272
Author(s):  
Doojin Lee ◽  
Amy Q. Shen

Droplet microfluidics provides a versatile tool for measuring interfacial tensions between two immiscible fluids owing to its abilities of fast response, enhanced throughput, portability and easy manipulations of fluid compositions, comparing to conventional techniques. Purely homogeneous extension in the microfluidic device is desirable to measure the interfacial tension because the flow field enables symmetric droplet deformation along the outflow direction. To do so, we designed a microfluidic device consisting of a droplet production region to first generate emulsion droplets at a flow-focusing area. The droplets are then trapped at a stagnation point in the cross junction area, subsequently being stretched along the outflow direction under the extensional flow. These droplets in the device are either confined or unconfined in the channel walls depending on the channel height, which yields different droplet deformations. To calculate the interfacial tension for confined and unconfined droplet cases, quasi-static 2D Darcy approximation model and quasi-static 3D small deformation model are used. For the confined droplet case under the extensional flow, an effective viscosity of the two immiscible fluids, accounting for the viscosity ratio of continuous and dispersed phases, captures the droplet deformation well. However, the 2D model is limited to the case where the droplet is confined in the channel walls and deforms two-dimensionally. For the unconfined droplet case, the 3D model provides more robust estimates than the 2D model. We demonstrate that both 2D and 3D models provide good interfacial tension measurements under quasi-static extensional flows in comparison with the conventional pendant drop method.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Dan Igra ◽  
Ozer Igra ◽  
Lazhar Houas ◽  
Georges Jourdan

Simulations of experimental results appearing in Jourdan et al. (2007, “Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results,”Proc. R. Soc. London, Ser. A, 463, pp. 3323–3345) regarding acceleration of a sphere by the postshock flow were conducted in order to find the contribution of the various parameters affecting the sphere drag force. Based on the good agreement found between present simulations and experimental findings, it is concluded that the proposed simulation scheme could safely be used for evaluating the sphere’s motion in the postshock flow.


Sign in / Sign up

Export Citation Format

Share Document