Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive

Author(s):  
J. Hur ◽  
G.H. Kang ◽  
J.Y. Lee ◽  
J.P. Hong ◽  
B.K. Lee
Author(s):  
Hafeezul Haq ◽  
Halil Ibrahim Okumus

The switched reluctance motor gains a significant response in industries in the past decade because of its ruggedness, high torque to inertia ratio, simple structure, high reliability and inexpensive manufacturing capability. These features make it a suitable candidate for various applications and electric drives. However, In the field of electric drives a switched reluctance motor drive is having doubly salient structure thus it inherently produces high torque ripples and acoustic noise problems and its controlling difficulties that is an undesirable effect for vehicle applications, especially at low speed. The main objective of this paper is to minimize the torque ripples and to control its speed. In this paper a fuzzy logic controller based direct torque control method is used for speed controlling and for controlling of torque ripples of the 8/6 SRM drive. It’s modelling and application of fuzzy logic controller based direct torque control method is done in MATLAB/SIMULINK environment.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6733
Author(s):  
Stefan Kocan ◽  
Pavol Rafajdus ◽  
Ronald Bastovansky ◽  
Richard Lenhard ◽  
Michal Stano

Currently, one of the most used motor types for high-speed applications is the permanent-magnet synchronous motor. However, this type of machine has high costs and rare earth elements are needed for its production. For these reasons, permanent-magnet-free alternatives are being sought. An overview of high-speed electrical machines has shown that the switched reluctance motor is a possible alternative. This paper deals with design and optimization of this motor, which should achieve the same output power as the existing high-speed permanent-magnet synchronous motor while maintaining the same motor volume. The paper presents the initial design of the motor and the procedure for analyses performed using analytical and finite element methods. During the electromagnetic analysis, the influence of motor geometric parameters on parameters such as: maximum current, average torque, torque ripple, output power, and losses was analyzed. The analysis of windage losses was performed by analytical calculation. Based on the results, it was necessary to create a cylindrical rotor shape. The rotor modification method was chosen based on mechanical analysis. Using thermal analysis, the design was modified to meet thermal limits. The result of the work was a design that met all requirements and limits.


Sign in / Sign up

Export Citation Format

Share Document