An interactive virtual environment inhabited virtual agents for oil-field safety operation training

Author(s):  
Xianmei Liu ◽  
Aimin Hao
2014 ◽  
Vol 23 (04) ◽  
pp. 1460020 ◽  
Author(s):  
George Anastassakis ◽  
Themis Panayiotopoulos

Intelligent virtual agent behaviour is a crucial element of any virtual environment application as it essentially brings the environment to life, introduces believability and realism and enables complex interactions and evolution over time. However, the development of mechanisms for virtual agent perception and action is neither a trivial nor a straight-forward task. In this paper we present a model of perception and action for intelligent virtual agents that meets specific requirements and can as such be systematically implemented, can seamlessly and transparently integrate with knowledge representation and intelligent reasoning mechanisms, is highly independent of virtual world implementation specifics, and enables virtual agent portability and reuse.


Author(s):  
Kevin J. Gucwa ◽  
Harry H. Cheng

The design of RoboSim, a virtual environment for modular robots which controls simulated robots with code written for the hardware robots without modification, is described in detail in this paper along with its applications in educational environments. RoboSim integrates into the Ch programming environment, a C/C++ interpreter, that provides the ability to remotely control robots through interpreted C/C++ code allowing users to alternate between hardware and virtual robots without modifying the code. Open source software projects Open Dynamics Engine, OpenSceneGraph, and Qt are employed to produce the virtual environment and user interface which provide the capability of running on all major software platforms. The design of the software includes multiple library modules each specific to a particular task; therefore the simulation library and Graphical User Interface (GUI) can link against only the necessary libraries. The GUI links against the graphical library and XML library to give an interactive view of the RoboSim Scene as users are adding robots and obstacles into both the GUI and simulation. Execution of Ch code generates a new RoboSim Scene window which has the entire simulation that utilizes the simulation, graphical, xml, and callback libraries, in addition to the identical Scene from the GUI. It generates its own window for the user to view and interact with the progress of the simulation.


2017 ◽  
Vol 43 (6) ◽  
pp. 625-636 ◽  
Author(s):  
S. V. Muraveva ◽  
M. V. Pronina ◽  
G. A. Moiseenko ◽  
A. N. Pnevskaya ◽  
Yu. I. Polyakov ◽  
...  

2010 ◽  
Vol 26-28 ◽  
pp. 809-812
Author(s):  
Hai Dong Yu ◽  
Bo Tao Zhang ◽  
Yan Chun Wang

This paper proposed a new interests game model with dynamic correlation analysis in distributed virtual environment based on mechanism design theory. The game definitions in correlation network and interest matrix were given and an analysis approach to find out the interest focus of virtual agents and administrator was presented. Thus a prototype virtual environment game system was implemented to demonstrate the effects of our approach in optimizing the visual rendering process and highlighting the collaborative perception according to payoffs under imperfect information condition.


BMJ Open ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. e019646 ◽  
Author(s):  
Frank Behrendt ◽  
Corina Schuster-Amft

IntroductionIn the recent past, training systems using an interactive virtual environment have been introduced to neurorehabilitation. Such systems can be applied to encourage purposeful limb movements and will increasingly be used at home by the individual patient. Therefore, an integrated valid and reliable assessment tool on the basis of such a system to monitor the recovery process would be an essential asset.ObjectivesThe aim of the study is to evaluate usability, feasibility and validity of the digital version of the Action Research Arm Test using the Bi-Manu-Trainer system as a platform. Additionally, the feasibility and usability of the implementation of action observation and motor imagery tasks into the Bi-Manu-Trainer software will be evaluated.Patients and methodsThis observational study is planned as a single-arm trial for testing the new assessment and the action observation and motor imagery training module. Therefore, 75 patients with Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury or Guillain-Barré syndrome will be included. 30 out of the 75 patients will additionally take part in a 4-week training on the enhanced Bi-Manu-Trainer system. Primary outcomes will be the score on the System Usability Scale and the correlation between the conventional and digital Action Research Arm Test scores. Secondary outcomes will be hand dexterity, upper limb activities of daily living and quality of life.HypothesisWe hypothesise that the digital Action Research Arm Test assessment is a valid and essential tool and that it is feasible to incorporate action observation and motor imagery into Bi-Manu-Trainer practice. The results are expected to give recommendations for necessary modifications and might also contribute knowledge concerning the application of action observation and motor imagery tasks using a training system such as the Bi-Manu-Trainer.Trial registration numberNCT03268304; Pre-results.


Sign in / Sign up

Export Citation Format

Share Document