A Hybrid Control Approach on Handling Orientation Constraints and Tracking Errors in Formation Control for Multiple Nonholonomic Mobile Manipulators

Author(s):  
Tobias Recker ◽  
Malte Heinrich ◽  
Annika Raatz
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mingyu Fu ◽  
Jianfang Jiao

This paper investigates the coordination control of multiple marine vessels in different operational modes. Based on hybrid control theory, a novel coordinated formation control approach is proposed. The proposed method comprises several continuous state controllers and discrete event logics. Continuous controllers for coordinated formation, coordinated dynamic positioning and coordinated path following are designed, and an appropriate weighting function is given to switch between these controllers according to initiated commands. In order to ensure the security of coordination operations of vessels in arbitrary initial locations, the supervisory switching control method is employed in the integrated coordination control system where all the controllers are governed by a supervisor. The effectiveness of the proposed coordinated formation control approach is finally illustrated by simulations.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 91
Author(s):  
Md Ali Azam ◽  
Hans D. Mittelmann ◽  
Shankarachary Ragi

In this paper, we present a decentralized unmanned aerial vehicle (UAV) swarm formation control approach based on a decision theoretic approach. Specifically, we pose the UAV swarm motion control problem as a decentralized Markov decision process (Dec-MDP). Here, the goal is to drive the UAV swarm from an initial geographical region to another geographical region where the swarm must form a three-dimensional shape (e.g., surface of a sphere). As most decision-theoretic formulations suffer from the curse of dimensionality, we adapt an existing fast approximate dynamic programming method called nominal belief-state optimization (NBO) to approximately solve the formation control problem. We perform numerical studies in MATLAB to validate the performance of the above control algorithms.


Robotica ◽  
2018 ◽  
Vol 36 (10) ◽  
pp. 1551-1570 ◽  
Author(s):  
Hossein Mirzaeinejad ◽  
Ali Mohammad Shafei

SUMMARYThis study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers.


Author(s):  
Xiang-min Tan ◽  
Dongbin Zhao ◽  
Jianqiang Yi ◽  
Dong Xu

An omnidirectional mobile manipulator, due to its large-scale mobility and dexterous manipulability, has attracted lots of attention in the last decades. However, modeling and control of such systems are very challenging because of their complicated mechanism. In this paper, an unified dynamic model is developed by Lagrange Formalism. In terms of the proposed model, an adaptive integrated tracking controller, based on the computed torque control (CTC) method and the radial basis function neural-network (RBFNN), is presented subsequently. Although CTC is an effective motion control strategy for mobile manipulators, it requires precise models. To handle the unmodeled dynamics and the external disturbance, a RBFNN, serving as a compensator, is adopted. This proposed controller combines the advantages of CTC and RBFNN. Simulation results show the correctness of the proposed model and the effectiveness of the control approach.


2019 ◽  
Vol 2019 (17) ◽  
pp. 3933-3936
Author(s):  
Mathias Schnarrenberger ◽  
Dennis Bräckle ◽  
Michael Braun

2020 ◽  
Vol 35 (6) ◽  
pp. 5832-5841 ◽  
Author(s):  
Mohammad Hassan Khooban ◽  
Meysam Gheisarnejad ◽  
Hamed Farsizadeh ◽  
Ali Masoudian ◽  
Jalil Boudjadar

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Liguo Weng ◽  
Min Xia ◽  
Kai Hu ◽  
Zhuhan Qiao

This paper addresses the problem of formation control for multiple spacecrafts in Planetary Orbital Environment (POE). Due to the presence of diverse interferences and uncertainties in the outer space, such as the changing spacecraft mass, unavailable space parameters, and varying gravity forces, traditional control methods encounter great difficulties in this area. A new control approach inspired by human memory and immune system is proposed, and this approach is shown to be capable of learning from past control experience and current behavior to improve its performance. It demands much less system dynamic information as compared with traditional controls. Both theoretic analysis and computer simulation verify its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document