scholarly journals A Hybrid Approach for Coordinated Formation Control of Multiple Surface Vessels

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mingyu Fu ◽  
Jianfang Jiao

This paper investigates the coordination control of multiple marine vessels in different operational modes. Based on hybrid control theory, a novel coordinated formation control approach is proposed. The proposed method comprises several continuous state controllers and discrete event logics. Continuous controllers for coordinated formation, coordinated dynamic positioning and coordinated path following are designed, and an appropriate weighting function is given to switch between these controllers according to initiated commands. In order to ensure the security of coordination operations of vessels in arbitrary initial locations, the supervisory switching control method is employed in the integrated coordination control system where all the controllers are governed by a supervisor. The effectiveness of the proposed coordinated formation control approach is finally illustrated by simulations.

Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Jae H. Chung ◽  
Changhoon Kim

This paper discusses the modeling and control of a robotic manipulator with a new deburring tool, which integrates two pneumatic actuators to take advantage of a double cutting action. A coordination control method is developed by decomposing the robotic deburring system into two subsystems; the arm and the deburring tool. A decentralized control approach is pursued, in which suitable controllers were designed for the two subsystems in the coordination scheme. In simulation, three different tool configurations are considered: rigid, single pneumatic and integrated pneumatic tools. A comparative study is performed to investigate the deburring performance of the deburring arm with the different tools. Simulation results show that the developed robotic deburring system significantly improves the accuracy of the deburring operation.


Author(s):  
Haowen Liu ◽  
Bingen Yang

Abstract For an unmanned aerial vehicle (UAV), its navigation in terrains can be quite challenging. To reach the destination within the required time, the maneuver of the quadrotor must behave aggressively. During this aggressive maneuvering, the quadrotor can experience singularities in the yaw-direction rotation. Thus, it is essentially important to develop a mathematical model and control method that can avoid singularities while enabling such an aggressive maneuver. In our previous effort, we demonstrated a vertical loop aggressive maneuver performed by a quadrotor UAV, which utilizes the controlled loop path following (CLPF) method. As found in this work, conventional modeling and tracking control method may not be good enough if specific requirements, such as fast coasting speed and sharp turns, are imposed. The numerical simulation by singularity-free modeling and the CLPF method enables a quadrotor to be operated in aggressive maneuverability with features like automatic flipping and precise trajectory following. The current research extends the maneuverability of a quadrotor by using a different and more capable control approach. More complex trajectories are used to test this new control method. In this paper, a quadrotor is used to demonstrate the capability of the proposed control method in delivering an aggressive and singularity-free maneuver. A quaternion-based mathematical model of the quadrotor is derived to avoid the singularities of rotation during the aggressive maneuvers. At the same time, a new control method, namely the full quaternion differential flatness (FQDF) method, is developed for quadrotors to combat the requirement of a fast maneuver in three-dimensional space. The FQDF method, which makes use of full quaternion modeling and differential flatness, enables the quadrotor to react to the reference trajectory timely and to exhibit aggressive rotation without any singularity. Also, the singularities resulting from the heading direction can be resolved by a new algorithm. The FQDF method is compared with the reference literature’s methods and is tested in different trajectories from the ones in the previous studies. The numerical simulation demonstrates the aggressive maneuverability and computational efficiency of the proposed control method.


Robotica ◽  
2014 ◽  
Vol 32 (2) ◽  
pp. 305-324 ◽  
Author(s):  
Ross P. Anderson ◽  
Dejan Milutinović

SUMMARYBeginning with a deterministic distributed feedback control for nonholonomic vehicle formations, we develop a stochastic optimal control approach for agents to enhance their non-optimal controls with additive correction terms based on the Hamilton–Jacobi–Bellman equation, making them optimal and robust to uncertainties. In order to avoid discretization of the high-dimensional cost-to-go function, we exploit the stochasticity of the distributed nature of the problem to develop an equivalent Kalman smoothing problem in a continuous state space using a path integral representation. Our approach is illustrated by numerical examples in which agents achieve a formation with their neighbors using only local observations.


Author(s):  
Meijiao Zhao ◽  
Yan Peng ◽  
Yueying Wang ◽  
Dan Zhang ◽  
Jun Luo ◽  
...  

In this paper, a concise leader-follower formation control approach is presented for a group of underactuated unmanned surface vehicle with dynamic system uncertainties and external environment disturbances, where the output errors are required to be within constraints. To settle the output error constraints, a standard barrier Lyapunov function (BLF) is incorporated into the backstepping control method. Furthermore, the “differential explosion” problem of virtual control laws is avoided by introducing the dynamic surface control. To estimate the unknown dynamic terms, an adaptive neural network is designed and a nonlinear disturbance observer is adopted to compensate for the approximation errors of neural network and ocean environment disturbances. Under the constraint of output error, the presented controller based on standard BLF has simpler structure and better control performance than depended on tan-type BLF. The presented controller can ensure that the formation errors converge to a small range around zero, while the output error constraint requirements are met. All signals in the closed-loop system are bounded, and the numerical simulation further shows the effectiveness of the presented control scheme.


2020 ◽  
Vol 39 (5) ◽  
pp. 6021-6031
Author(s):  
Anıl Sezgin ◽  
Ömer Çetin

The autonomous navigation problem is currently a popular research topic encountered in many different areas, from smart cars to automated warehouse operations. Autonomous navigation of robotic systems is examined in two basic areas, with and without external supports. Even if the robot uses external supports (like GPS, road signs, ground surface lines, barcodes etc.) or positioning itself with internal sensors (like gyro, IMU, etc.), it independently needs a control method to follow the desired route. When the widely used control approaches in the literature are examined, PID and fuzzy-based approaches are frequently encountered. They both offer advantages and disadvantages. Within the scope of this study, the positive aspects of both of control approaches are utilized and the hybrid control approach for a robot that can autonomously follow the ground line presented as an external reference is mentioned. The success of the approach was tested comparatively on an exemplary mobile platform. The applied results obtained experimentally showed that a more efficient fuzzy logic-based hybrid control method could be developed. In addition, the effect of the number of conditions in the rule table on the success of the hybrid control technique is shown in the study. It has also been experimentally demonstrated that the success of hybrid control approach with a limited low power consuming ARM based processor that is suitable to control most of lightweight mobile platforms.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4563
Author(s):  
Muhammad Ali ◽  
Ghulam Hafeez ◽  
Ajmal Farooq ◽  
Zeeshan Shafiq ◽  
Faheem Ali ◽  
...  

This paper proposes a hybrid control scheme for a newly devised hybrid multilevel inverter (HMLI) topology. The circuit configuration of HMLI is comprised of a cascaded converter module (CCM), connected in series with an H-bridge converter. Initially, a finite set model predictive control (FS-MPC) is adopted as a control scheme, and theoretical analysis is carried out in MATLAB/Simulink. Later, in the real-time implementation of the HMLI topology, a hybrid control scheme which is a variant of the FS-MPC method has been proposed. The proposed control method is computationally efficient and therefore has been employed to the HMLI topology to mitigate the high-frequency switching limitation of the conventional MPC. Moreover, a comparative analysis is carried to illustrate the advantages of the proposed work that includes low switching losses, higher efficiency, and improved total harmonic distortion (THD) in output current. The inverter topology and stability of the proposed control method have been validated through simulation results in MATLAB/Simulink environment. Experimental results via low-voltage laboratory prototype have been added and compared to realize the study in practice.


2005 ◽  
Vol 78 (15) ◽  
pp. 1228-1247 ◽  
Author(s):  
A. Balluchi * ◽  
A. Bicchi ◽  
P. Souères

SIMULATION ◽  
2021 ◽  
pp. 003754972110633
Author(s):  
Andre N Costa ◽  
Felipe LL Medeiros ◽  
Joao PA Dantas ◽  
Diego Geraldo ◽  
Nei Y Soma

As simulation becomes more present in the military context for variate purposes, the need for accurate behaviors is of paramount importance. In the air domain, a noteworthy behavior relates to how a group of aircraft moves in a coordinated way. This can be defined as formation flying, which, combined with a move-to-goal behavior, is the focus of this work. The objective of the formation control problem considered is to ensure that simulated aircraft fly autonomously, seeking a formation, while moving toward a goal waypoint. For that, we propose the use of artificial potential fields, which reduce the complexities that implementing a complete cognition model could pose. These fields define forces that control the movement of the entities into formation and to the prescribed waypoint. Our formation control approach is parameterizable, allowing modifications that translate how the aircraft prioritize its sub-behaviors. Instead of defining this prioritization on an empirical basis, we elaborate metrics to evaluate the chosen parameters. From these metrics, we use an optimization methodology to find the best parameter values for a set of scenarios. Thus, our main contribution is bringing together artificial potential fields and simulation optimization to achieve more robust results for simulated military aircraft to fly in formation. We use a large set of scenarios for the optimization process, which evaluates its objective function through the simulations. The results show that the use of the proposed approach may generate gains of up to 27% if compared to arbitrarily selected parameters, with respect to one of the metrics adopted. In addition, we were able to observe that, for the scenarios considered, the presence of a formation leader was an obstacle to achieving the best results, demonstrating that our approach may lead to conclusions with direct operational impacts.


Sign in / Sign up

Export Citation Format

Share Document