Combining Fingerprints and their Radon Transform as Input to Deep Learning for a Fingerprint Classification Task

Author(s):  
Dhekra El Hamdi ◽  
Ines Elouedi ◽  
Abir Fathallah ◽  
Mai K. Nguyuen ◽  
Atef Hamouda
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kinshuk Sengupta ◽  
Praveen Ranjan Srivastava

Abstract Background In medical diagnosis and clinical practice, diagnosing a disease early is crucial for accurate treatment, lessening the stress on the healthcare system. In medical imaging research, image processing techniques tend to be vital in analyzing and resolving diseases with a high degree of accuracy. This paper establishes a new image classification and segmentation method through simulation techniques, conducted over images of COVID-19 patients in India, introducing the use of Quantum Machine Learning (QML) in medical practice. Methods This study establishes a prototype model for classifying COVID-19, comparing it with non-COVID pneumonia signals in Computed tomography (CT) images. The simulation work evaluates the usage of quantum machine learning algorithms, while assessing the efficacy for deep learning models for image classification problems, and thereby establishes performance quality that is required for improved prediction rate when dealing with complex clinical image data exhibiting high biases. Results The study considers a novel algorithmic implementation leveraging quantum neural network (QNN). The proposed model outperformed the conventional deep learning models for specific classification task. The performance was evident because of the efficiency of quantum simulation and faster convergence property solving for an optimization problem for network training particularly for large-scale biased image classification task. The model run-time observed on quantum optimized hardware was 52 min, while on K80 GPU hardware it was 1 h 30 min for similar sample size. The simulation shows that QNN outperforms DNN, CNN, 2D CNN by more than 2.92% in gain in accuracy measure with an average recall of around 97.7%. Conclusion The results suggest that quantum neural networks outperform in COVID-19 traits’ classification task, comparing to deep learning w.r.t model efficacy and training time. However, a further study needs to be conducted to evaluate implementation scenarios by integrating the model within medical devices.


2020 ◽  
Vol 12 (8) ◽  
pp. 133 ◽  
Author(s):  
George Albert Florea ◽  
Radu-Casian Mihailescu

Deep learning (DL) models have emerged in recent years as the state-of-the-art technique across numerous machine learning application domains. In particular, image processing-related tasks have seen a significant improvement in terms of performance due to increased availability of large datasets and extensive growth of computing power. In this paper we investigate the problem of group activity recognition in office environments using a multimodal deep learning approach, by fusing audio and visual data from video. Group activity recognition is a complex classification task, given that it extends beyond identifying the activities of individuals, by focusing on the combinations of activities and the interactions between them. The proposed fusion network was trained based on the audio–visual stream from the AMI Corpus dataset. The procedure consists of two steps. First, we extract a joint audio–visual feature representation for activity recognition, and second, we account for the temporal dependencies in the video in order to complete the classification task. We provide a comprehensive set of experimental results showing that our proposed multimodal deep network architecture outperforms previous approaches, which have been designed for unimodal analysis, on the aforementioned AMI dataset.


2020 ◽  
Vol 39 (5) ◽  
pp. 7909-7919
Author(s):  
Chuantao Wang ◽  
Xuexin Yang ◽  
Linkai Ding

The purpose of sentiment classification is to solve the problem of automatic judgment of sentiment tendency. In the sentiment classification task of text data (such as online reviews), the traditional deep learning model focuses on algorithm optimization, but ignores the characteristics of the imbalanced distribution of the number of samples in each classification, which will cause the classification performance of the model to decrease in practical applications. In this paper, the experiment is divided into two stages. In the first stage, samples of minority class in the sample distribution are used to train a sequence generative adversarial nets, so that the sequence generative adversarial nets can learn the features of the samples of minority class in depth. In the second stage, the trained generator of sequence generative adversarial nets is used to generate false samples of minority class and mix them with the original samples to balance the sample distribution. After that, the mixed samples are input into the sentiment classification deep model to complete the model training. Experimental results show that the model has excellent classification performance in comparing a variety of deep learning models based on classic imbalanced learning methods in the sentiment classification task of hotel reviews.


2021 ◽  
Author(s):  
Qinze Yu ◽  
Zhihang Dong ◽  
Xingyu Fan ◽  
Licheng Zong ◽  
Yu Li

Identifying the targets of an antimicrobial peptide is a fundamental step in studying the innate immuneresponse and combating antibiotic resistance, and more broadly, precision medicine and public health. Therehave been extensive studies on the statistical and computational approaches to identify (i) whether a peptide is anantimicrobial peptide (AMP) or a non-AMP and (ii) which targets are these sequences effective to (Gram-positive,Gram-negative, etc.). Despite the existing deep learning methods on this problem, most of them are unable tohandle the small AMP classes (anti-insect, anti-parasite, etc.). And more importantly, some AMPs can havemultiple targets, which the previous methods fail to consider. In this study, we build a diverse and comprehensivemulti-label protein sequence database by collecting and cleaning amino acids from various AMP databases.To generate efficient representations and features for the small classes dataset, we take advantage of a proteinlanguage model trained on 250 million protein sequences. Based on that, we develop an end-to-end hierarchicalmulti-label deep forest framework, HMD-AMP, to annotate AMP comprehensively. After identifying an AMP, itfurther predicts what targets the AMP can effectively kill from eleven available classes. Extensive experimentssuggest that our framework outperforms state-of-the-art models in both the binary classification task and themulti-label classification task, especially on the minor classes. Compared with the previous deep learning methods,our method improves the performance on macro-AUROC by 11%. The model is robust against reduced featuresand small perturbations and produces promising results. We believe HMD-AMP contribute to both the future wet-lab investigations of the innate structural properties of different antimicrobial peptides and build promising empirical underpinnings for precise medicine with antibiotics.


Sign in / Sign up

Export Citation Format

Share Document