Indoor Mobile Localization Based on A Tightly Coupled UWB/INS Integration

Author(s):  
Haoran Yang ◽  
Yujin Kuang ◽  
Manyi Wang ◽  
Xiaoyu Bao ◽  
Yuan Yang
Author(s):  
Kaori Kashimura ◽  
Takafumi Kawasaki Jr. ◽  
Nozomi Ikeya ◽  
Dave Randall

This chapter provides an ethnography of a complex scenario involving the construction of a power plant and, in so doing, tries to show the importance of a practice-based approach to the problem of technical and organizational change. The chapter reports on fieldwork conducted in a highly complex and tightly coupled environment: power plant construction. The ethnography describes work practices on three different sites and describes and analyses their interlocking dependencies, showing the difficulties encountered at each location and the way in which the delays that result cascade through the different sites. It goes on to describe some technological solutions that are associated with augmented reality and that are being designed in response to the insights gained from the fieldwork. The chapter also reflects more generally on the relationship between fieldwork and design in real-world contexts.


Author(s):  
Kelly Chance ◽  
Randall V. Martin

Blackbody radiation, temperature, and thermodynamic equilibrium give a tightly coupled description of systems (atmospheres, volumes, surfaces) that obey Boltzmann statistics. They provide descriptions of systems when Boltzmann statistics apply, either approximately or nearly exactly. These apply most of the time in the Earth’s stratosphere and troposphere, and in other planetary atmospheres as long as the density is sufficient that collisions among atmospheric molecules, rather than photochemical and photophysical properties, determine the energy populations of the ensemble of molecules. Thermodynamic equilibrium and the approximation of local thermodynamic equilibrium are introduced. Boltzmann statistics, blackbody radiation, and Planck’s law are described. The chapter introduces the Rayleigh-Jeans limit, description of noise sources as temperatures, Kirchoff’s law, the Stefan-Boltzmann constant, and Wien’s law.


Author(s):  
Victoria A. Carey ◽  
Matthew R. Konkol ◽  
Shouyuan Shi ◽  
Andrew J. Mercante ◽  
Kevin Shreve ◽  
...  

Author(s):  
Berta Bescos ◽  
Carlos Campos ◽  
Juan D. Tardos ◽  
Jose Neira

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junhong Yu ◽  
Rathi Mahendran

AbstractThe COVID-19 lockdown has drastically limited social interactions and brought about a climate of fear and uncertainty. These circumstances not only increased affective symptoms and social isolation among community dwelling older adults but also alter the dynamics between them. Using network analyses, we study the changes in these dynamics before and during the lockdown. Community-dwelling older adults (N = 419) completed questionnaires assessing depression, anxiety, and social isolation, before the COVID-19 pandemic, as part of a cohort study, and during the lockdown period. The total scores of these questionnaires were compared across time. For the network analyses, partial correlation networks were constructed using items in the questionnaires as nodes, separately at both timepoints. Changes in edges, as well as nodal and bridge centrality were examined across time. Depression and anxiety symptoms, and social isolation had significantly increased during the lockdown. Significant changes were observed across time on several edges. Greater connectivity between the affective and social isolation nodes at lockdown was observed. Depression symptoms have become more tightly coupled across individuals, and so were the anxiety symptoms. Depression symptoms have also become slightly decoupled from those of anxiety. These changing network dynamics reflect the greater influence of social isolation on affective symptoms across individuals and an increased vulnerability to affective disorders. These findings provide novel perspectives and translational implications on the changing mental health context amidst a COVID-19 pandemic situation.


Sign in / Sign up

Export Citation Format

Share Document