Detection and classification of explosive substances in multi-spectral image sequences using linear subspace matching

Author(s):  
Maria Axelsson ◽  
Ola Friman ◽  
Ida Johansson ◽  
Markus Nordberg ◽  
Henric Ostmark
TecnoLógicas ◽  
2019 ◽  
Vol 22 (46) ◽  
pp. 1-14 ◽  
Author(s):  
Jorge Luis Bacca ◽  
Henry Arguello

Spectral image clustering is an unsupervised classification method which identifies distributions of pixels using spectral information without requiring a previous training stage. The sparse subspace clustering-based methods (SSC) assume that hyperspectral images lie in the union of multiple low-dimensional subspaces.  Using this, SSC groups spectral signatures in different subspaces, expressing each spectral signature as a sparse linear combination of all pixels, ensuring that the non-zero elements belong to the same class. Although these methods have shown good accuracy for unsupervised classification of hyperspectral images, the computational complexity becomes intractable as the number of pixels increases, i.e. when the spatial dimension of the image is large. For this reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image, and later, the clustering results for the missing pixels are obtained by exploiting the spatial information. Specifically, this work proposes two methodologies to remove the pixels, the first one is based on spatial blue noise distribution which reduces the probability to remove cluster of neighboring pixels, and the second is a sub-sampling procedure that eliminates every two contiguous pixels, preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated in three datasets showing that a similar accuracy is obtained when up to 50% of the pixels are removed, in addition, it is up to 7.9 times faster compared to the classification of the data sets without incomplete pixels.


2018 ◽  
Vol 34 ◽  
pp. 71-114
Author(s):  
Clément De Seguins Pazzis

Let U and V be finite-dimensional vector spaces over a field K, and S be a linear subspace of the space L(U, V ) of all linear operators from U to V. A map F : S → V is called range-compatible when F(s) ∈ Im s for all s ∈ S. Previous work has classified all the range-compatible group homomorphisms provided that codimL(U,V )S ≤ 2 dim V − 3, except in the special case when K has only two elements and codimL(U,V )S = 2 dim V − 3. This article gives a thorough treatment of that special case. The results are partly based upon the recent classification of vector spaces of matrices with rank at most 2 over F2. As an application, the 2-dimensional non-reflexive operator spaces are classified over any field, and so do the affine subspaces of Mn,p(K) with lower-rank at least 2 and codimension 3.


2001 ◽  
Vol 25 (6) ◽  
pp. 465-476 ◽  
Author(s):  
C.-M. Wang ◽  
S.-C. Yang ◽  
P.-C. Chung ◽  
C.-I Chang ◽  
C.-S. Lo ◽  
...  

2015 ◽  
Vol 7 (7) ◽  
pp. 9253-9268 ◽  
Author(s):  
Chun Liu ◽  
Junjun Yin ◽  
Jian Yang ◽  
Wei Gao

One key problem for the classification of multi-frequency polarimetric SAR images is to extract target features simultaneously in the aspects of frequency, polarization and spatial texture. This paper proposes a new classification method for multi-frequency polarimetric SAR data based on tensor representation and multi-linear subspace learning (MLS). Firstly, each cell of the SAR images is represented by a third-order tensor in the frequency, polarization and spatial domains, with each order of tensor corresponding to one domain. Then, two main MLS methods, i.e., multi-linear principal component analysis (MPCA) and multi-linear extension of linear discriminant analysis (MLDA), are used to learn the third-order tensors. MPCA is used to analyze the principal component of the tensors. MLDA is applied to improve the discrimination between different land covers. Finally, the lower dimension subtensor features extracted by the MPCA and MLDA algorithms are classified with a neural network (NN) classifier. The classification scheme is accessed using multi-band polarimetric SAR images (C-, L- and P-band) acquired by the Airborne Synthetic Aperture Radar (AIRSAR) sensor of the Jet Propulsion Laboratory (JPL) over the Flevoland area. Experimental results demonstrate that the proposed method has good classification performance in comparison with the classic multi-band Wishart classifier. The overall classification accuracy is close to 99%, even when the number of training samples is small.


Sign in / Sign up

Export Citation Format

Share Document