A deep learning approach towards pore extraction for high-resolution fingerprint recognition

Author(s):  
Hong-Ren Su ◽  
Kuang-Yu Chen ◽  
Wei Jing Wong ◽  
Shang-Hong Lai
2019 ◽  
Author(s):  
Nicholas Bernstein ◽  
Nicole Fong ◽  
Irene Lam ◽  
Margaret Roy ◽  
David G. Hendrickson ◽  
...  

AbstractSingle cell RNA-seq (scRNA-seq) measurements of gene expression enable an unprecedented high-resolution view into cellular state. However, current methods often result in two or more cells that share the same cell-identifying barcode; these “doublets” violate the fundamental premise of single cell technology and can lead to incorrect inferences. Here, we describe Solo, a semi-supervised deep learning approach that identifies doublets with greater accuracy than existing methods. Solo can be applied in combination with experimental doublet detection methods to further purify scRNA-seq data to true single cells beyond any previous approach.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hongyu Wang ◽  
Hong Gu ◽  
Pan Qin ◽  
Jia Wang

Deep learning has achieved considerable success in medical image segmentation. However, applying deep learning in clinical environments often involves two problems: (1) scarcity of annotated data as data annotation is time-consuming and (2) varying attributes of different datasets due to domain shift. To address these problems, we propose an improved generative adversarial network (GAN) segmentation model, called U-shaped GAN, for limited-annotated chest radiograph datasets. The semi-supervised learning approach and unsupervised domain adaptation (UDA) approach are modeled into a unified framework for effective segmentation. We improve GAN by replacing the traditional discriminator with a U-shaped net, which predicts each pixel a label. The proposed U-shaped net is designed with high resolution radiographs (1,024 × 1,024) for effective segmentation while taking computational burden into account. The pointwise convolution is applied to U-shaped GAN for dimensionality reduction, which decreases the number of feature maps while retaining their salient features. Moreover, we design the U-shaped net with a pretrained ResNet-50 as an encoder to reduce the computational burden of training the encoder from scratch. A semi-supervised learning approach is proposed learning from limited annotated data while exploiting additional unannotated data with a pixel-level loss. U-shaped GAN is extended to UDA by taking the source and target domain data as the annotated data and the unannotated data in the semi-supervised learning approach, respectively. Compared to the previous models dealing with the aforementioned problems separately, U-shaped GAN is compatible with varying data distributions of multiple medical centers, with efficient training and optimizing performance. U-shaped GAN can be generalized to chest radiograph segmentation for clinical deployment. We evaluate U-shaped GAN with two chest radiograph datasets. U-shaped GAN is shown to significantly outperform the state-of-the-art models.


2021 ◽  
Vol 27 (S1) ◽  
pp. 464-465
Author(s):  
Ramon Manzorro ◽  
Matan Leibovich ◽  
Joshua Vincent ◽  
Sreyas Mohan ◽  
David Matteson ◽  
...  

2021 ◽  
Author(s):  
Rilwan A. Adewoyin ◽  
Peter Dueben ◽  
Peter Watson ◽  
Yulan He ◽  
Ritabrata Dutta

AbstractClimate models (CM) are used to evaluate the impact of climate change on the risk of floods and heavy precipitation events. However, these numerical simulators produce outputs with low spatial resolution that exhibit difficulties representing precipitation events accurately. This is mainly due to computational limitations on the spatial resolution used when simulating multi-scale weather dynamics in the atmosphere. To improve the prediction of high resolution precipitation we apply a Deep Learning (DL) approach using input data from a reanalysis product, that is comparable to a climate model’s output, but can be directly related to precipitation observations at a given time and location. Further, our input excludes local precipitation, but includes model fields (weather variables) that are more predictable and generalizable than local precipitation. To this end, we present TRU-NET (Temporal Recurrent U-Net), an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers to effectively model multi-scale spatio-temporal weather processes. We also propose a non-stochastic variant of the conditional-continuous (CC) loss function to capture the zero-skewed patterns of rainfall. Experiments show that our models, trained with our CC loss, consistently attain lower RMSE and MAE scores than a DL model prevalent in precipitation downscaling and outperform a state-of-the-art dynamical weather model. Moreover, by evaluating the performance of our model under various data formulation strategies, for the training and test sets, we show that there is enough data for our deep learning approach to output robust, high-quality results across seasons and varying regions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Meytar Sorek Hamer ◽  
Ata Akbari Asanjan ◽  
Michael Von Pohle ◽  
Adwait Sahasrabhojanee ◽  
Emily Deardorff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document