The path planning algorithms for a mobile robot based on the occupancy grid map of the environment — A comparative study

Author(s):  
Mijo Cikes ◽  
Marija Dakulovic ◽  
Ivan Petrovic
2020 ◽  
Vol 17 (4) ◽  
pp. 535-542
Author(s):  
Ravinder Singh ◽  
Akshay Katyal ◽  
Mukesh Kumar ◽  
Kirti Singh ◽  
Deepak Bhola

Purpose Sonar sensor-based mobile robot mapping is an efficient and low cost technique for the application such as localization, autonomous navigation, SLAM and path planning. In multi-robots system, numbers of sonar sensors are used and the sound waves from sonar are interacting with the sound wave of other sonar causes wave interference. Because of wave interference, the generated sonar grid maps get distorted which resulted in decreasing the reliability of mobile robot’s navigation in the generated grid maps. This research study focus in removing the effect of wave interfaces in the sonar mapping to achieve robust navigation of mobile robot. Design/methodology/approach The wrong perception (occupancy grid map) of the environment due to cross talk/wave interference is eliminated by randomized the triggering time of sonar by varying the delay/sleep time of each sonar sensor. A software-based approach randomized triggering technique (RTT) is design in laboratory virtual instrument engineering workbench (LabVIEW) that randomized the triggering time of the sonar sensor to eliminate the effect of wave interference/cross talk when multiple sonar are placed in face-forward directions. Findings To check the reliability of the RTT technique, various real-world experiments are perform and it is experimentally obtained that 64.8% improvement in terms of probabilities in the generated occupancy grid map has been attained when compared with the conventional approaches. Originality/value This proposed RTT technique maybe implementing for SLAM, reliable autonomous navigation, optimal path planning, efficient robotics vision, consistent multi-robotic system, etc.


2016 ◽  
Vol 28 (4) ◽  
pp. 461-469 ◽  
Author(s):  
Tomoyoshi Eda ◽  
◽  
Tadahiro Hasegawa ◽  
Shingo Nakamura ◽  
Shin’ichi Yuta

[abstFig src='/00280004/04.jpg' width='300' text='Autonomous mobile robots entered in the Tsukuba Challenge 2015' ] This paper describes a self-localization method for autonomous mobile robots entered in the Tsukuba Challenge 2015. One of the important issues in autonomous mobile robots is accurately estimating self-localization. An occupancy grid map, created manually before self-localization has typically been utilized to estimate the self-localization of autonomous mobile robots. However, it is difficult to create an accurate map of complex courses. We created an occupancy grid map combining local grid maps built using a leaser range finder (LRF) and wheel odometry. In addition, the self-localization of a mobile robot was calculated by integrating self-localization estimated by a map and matching it to wheel odometry information. The experimental results in the final run of the Tsukuba Challenge 2015 showed that the mobile robot traveled autonomously until the 600 m point of the course, where the occupancy grid map ended.


2018 ◽  
Vol 06 (02) ◽  
pp. 95-118 ◽  
Author(s):  
Mohammadreza Radmanesh ◽  
Manish Kumar ◽  
Paul H. Guentert ◽  
Mohammad Sarim

Unmanned aerial vehicles (UAVs) have recently attracted the attention of researchers due to their numerous potential civilian applications. However, current robot navigation technologies need further development for efficient application to various scenarios. One key issue is the “Sense and Avoid” capability, currently of immense interest to researchers. Such a capability is required for safe operation of UAVs in civilian domain. For autonomous decision making and control of UAVs, several path-planning and navigation algorithms have been proposed. This is a challenging task to be carried out in a 3D environment, especially while accounting for sensor noise, uncertainties in operating conditions, and real-time applicability. Heuristic and non-heuristic or exact techniques are the two solution methodologies that categorize path-planning algorithms. The aim of this paper is to carry out a comprehensive and comparative study of existing UAV path-planning algorithms for both methods. Three different obstacle scenarios test the performance of each algorithm. We have compared the computational time and solution optimality, and tested each algorithm with variations in the availability of global and local obstacle information.


Sign in / Sign up

Export Citation Format

Share Document