Evaluation of the voltage supply unbalance and detection of the short-circuit faults in induction machine through the neighboring magnetic field

Author(s):  
Miftah Irhoumah ◽  
Remus Pusca ◽  
Eric Lefevre ◽  
David Mercier ◽  
Raphael Rromary
Author(s):  
Ildar Yamansarin ◽  
◽  
Mikhail Salikov ◽  
Alexander Padeev ◽  
Dmitry Surkov ◽  
...  

The article deals with the issues related to the possibility of diagnosing the technical condition of an asyn-chronous electric motor by an external magnetic field. The justification of the problems associated with the di-agnosis of electric motors is given. The difficulties that arise when measuring the external magnetic field of electric motors, as well as the devices with which it is possible to carry out measurements, are described. The re-lationship between the EMF of the sensor and the external magnetic field is shown. The results of processing the EMF waveforms induced by an external magnetic field in an inductive sensor for various electric motors are presented. The processing was carried out by the fast Fourier transform method. The external magnetic field contains the first harmonic and various harmonics that are multiples of the combination of the stator teeth, or the sum of the stator and rotor teeth that fall on one pair of poles. The ratio of the amplitudes of the first and tooth harmonics is affected by the measurement location and the orientation of the sensor. Diagrams showing the ratio of the main and tooth harmonics at different points of the motor body are constructed. The depend-ences of the harmonic amplitudes on the magnitude of the magnetizing current of the stator are given. Changes in the amplitudes and spectrum of harmonics in the presence and absence of an inter-turn short circuit in the stator winding are shown. Diagrams of the circular external magnetic field for the main and higher harmonics are constructed. The study shows the possibility of using an external magnetic field to detect inter-turn short circuits of the stator winding.


2009 ◽  
Vol 154 ◽  
pp. 157-161 ◽  
Author(s):  
V.P. Dyakonov ◽  
S. Piechota ◽  
K. Piotrowski ◽  
A. Szewczyk ◽  
H. Szymczak ◽  
...  

The main objective of the performed investigations was to enhance sensitivity of a current sensor to weak changes of magnetic field. New design of the sensor of current based on magnetoresistance effect – MRE (MRE = (RH - R0)/R0 , where RH is the resistance in magnetic field and R0 is the resistance without magnetic field) was developed. The sensor was produced in the form of an annular magnet with a gap, in which the (La0.7Sr0.3)0.8Мn1.2О3 manganite film possessing large negative MRE was inserted. Nominal current in a controllable electric circuit can change from a few tenths parts of ampere to a hundred of amperes. The limit detectable change of current value depends on the size of gap in the annular magnet. The operation time of sensor at current overload and short circuit is less than 0.3 sec. These magnetoresistors are thermally stable over the temperature range from (- 50 ° С) to (+ 50 ° С). Proposed sensors based on MRE can be applied in many electrical arrangements and devices.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 133 ◽  
Author(s):  
Jing Tang ◽  
Jie Chen ◽  
Kan Dong ◽  
Yongheng Yang ◽  
Haichen Lv ◽  
...  

The modeling of stator and rotor faults is the basis of the development of online monitoring techniques. To obtain reliable stator and rotor fault models, this paper focuses on dynamic modeling of the stator and rotor faults in real-time, which adopts a multiple-coupled-circuit method by using a winding function approach for inductance calculation. Firstly, the model of the induction machine with a healthy cage is introduced, where a rotor mesh that consists of a few rotor loops and an end ring loop is considered. Then, the stator inter-turn fault model is presented by adding an extra branch with short circuit resistance on the fault part of a stator phase winding. The broken rotor bar fault is then detailed by merging and removing the broken-bar-related loops. Finally, the discrete models under healthy and faulty conditions are developed by using the Tustin transformation for digital implementation. Moreover, the stator and rotor mutual inductances are derived as a function of the rotor position according to the turn and winding functions distribution. Simulations and experiments are performed on a 2.2-kW/380-V/50-Hz three-phase and four-pole induction motor to show the performance of the stator and rotor faults, where the saturation effect is considered in simulations by exploiting the measurements of a no load test. The simulation results are in close agreement with the experimental results. Furthermore, magnitudes of the characteristic frequencies of 2f1 in torque and (1 ± 2s)f1 in current are analyzed to evaluate the stator and rotor fault severity. Both indicate that the stator fault severity is related to the short circuit resistance. Further, the number of shorted turns and the number of continuous broken bars determines the rotor fault severity.


Sign in / Sign up

Export Citation Format

Share Document