An Electronic Nose System Based on an Array of Carbon Nanotubes Gas Sensors with Pattern Recognition Techniques

Author(s):  
Zikai Zhao ◽  
Guohua Hui
2020 ◽  
Vol 66 (No. 3) ◽  
pp. 97-103
Author(s):  
Farel Ahadyatulakbar Aditama ◽  
Lalu Zulfikri ◽  
Laili Mardiana ◽  
Tri Mulyaningsih ◽  
Nurul Qomariyah ◽  
...  

The aim of the present study is the development of an electronic nose system prototype for the classification of Gyrinops versteegii agarwood. The prototype consists of three gas sensors, i.e., TGS822, TGS2620, and TGS2610. The data acquisition and quality classification of the nose system are controlled by the Artificial Neural Network backpropagation algorithm in the Arduino Mega2650 microcontroller module. The testing result shows that an electronic nose can distinguish the quality of Gyrinops versteegii agarwood. The good-quality agarwood has an output of [1 –1], while the poor-quality agarwood has an output of [–1 1].


2001 ◽  
Vol 449 (1-2) ◽  
pp. 69-80 ◽  
Author(s):  
Yolanda González Martı́n ◽  
M.Concepción Cerrato Oliveros ◽  
José Luis Pérez Pavón ◽  
Carmelo Garcı́a Pinto ◽  
Bernardo Moreno Cordero

Author(s):  
Wenshen Jia ◽  
Gang Liang ◽  
Hui Tian ◽  
Jing Sun ◽  
Cihui Wan

In this paper, PEN3 electronic nose was used to detect and recognize fresh and moldy apples (inoculated with Penicillium expansum and Aspergillusniger) taken Golden Delicious apples as model subject. Firstly, the apples were divided into two groups: apples only inoculated with different molds (Group A) and mixed apples of inoculated apples with fresh apples (Group B). Then the characteristic gas sensors of the PEN3 electronic nose that were most closely correlated with the flavor information of the moldy apples were optimized and determined, which can simplify the analysis process and improve the accuracy of results. Four pattern recognition methods, including linear discriminant analysis (LDA), backpropagation neural network (BPNN), support vector machines (SVM) and radial basis function neural network (RBFNN), were then applied to analyze the data obtained from the characteristic sensors, respectively, aiming at establishing the prediction model of flavor information and fresh/moldy apples. The results showed that only the gas sensors of W1S, W2S, W5S, W1W and W2W in the PEN3 electronic nose exhibited strong signal response to the flavor information, indicating were most closely correlated with the characteristic flavor of apples and thus the data obtained from these characteristic sensors was used for modeling. The results of the four pattern recognition methods showed that BPNN presented the best prediction performance for the training and validation sets for both the Group A and Group B, with prediction accuracies of 96.29% and 90.00% (Group A), 77.70% and 72.00% (Group B), respectively. Therefore, it first demonstrated that PEN3 electronic nose can not only effectively detect and recognize the fresh and moldy apples, but also can distinguish apples inoculated with different molds.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1526 ◽  
Author(s):  
Wenshen Jia ◽  
Gang Liang ◽  
Hui Tian ◽  
Jing Sun ◽  
Cihui Wan

In this study, the PEN3 electronic nose was used to detect and recognize fresh and moldy apples inoculated with Penicillium expansum and Aspergillus niger, taking Golden Delicious apples as the model subject. Firstly, the apples were divided into two groups: individual apple inoculated only with/without different molds (Group A) and mixed apples of inoculated apples with fresh apples (Group B). Then, the characteristic gas sensors of the PEN3 electronic nose that were most closely correlated with the flavor information of the moldy apples were optimized and determined to simplify the analysis process and improve the accuracy of the results. Four pattern recognition methods, including linear discriminant analysis (LDA), backpropagation neural network (BPNN), support vector machines (SVM), and radial basis function neural network (RBFNN), were applied to analyze the data obtained from the characteristic sensors, aiming at establishing the prediction model of the flavor information and fresh/moldy apples. The results showed that only the gas sensors of W1S, W2S, W5S, W1W, and W2W in the PEN3 electronic nose exhibited a strong signal response to the flavor information, indicating most were closely correlated with the characteristic flavor of apples and thus the data obtained from these characteristic sensors were used for modeling. The results of the four pattern recognition methods showed that BPNN had the best prediction performance for the training and testing sets for both Groups A and B, with prediction accuracies of 96.3% and 90.0% (Group A), 77.7% and 72.0% (Group B), respectively. Therefore, we demonstrate that the PEN3 electronic nose not only effectively detects and recognizes fresh and moldy apples, but also can distinguish apples inoculated with different molds.


1987 ◽  
Vol 194 ◽  
pp. 1-9 ◽  
Author(s):  
Hidetsugu Abe ◽  
Tadayosi Yoshimura ◽  
Shigehiko Kanaya ◽  
Yoshimasa Takahashi ◽  
Yoshikatsu Miyashita ◽  
...  

2020 ◽  
Vol 12 (47) ◽  
pp. 5671-5683
Author(s):  
Thara Seesaard ◽  
Chadinee Thippakorn ◽  
Teerakiat Kerdcharoen ◽  
Sumana Kladsomboon

Self-built hybrid electronic nose prototypes equipped with organic–inorganic nanocomposite gas sensors and metal-oxide semiconductor gas sensors for bacterial discrimination.


Sign in / Sign up

Export Citation Format

Share Document