Chemical Embedding Immobilization Technique of Micrococcus sp. Used in Contaminated Surface Water Remediation

Author(s):  
Ru Li ◽  
Xi Chen ◽  
Xin-yang Xu ◽  
Xuan Gong
2021 ◽  
Vol 930 (1) ◽  
pp. 012020
Author(s):  
T Setianingsih ◽  
D Purwonugroho ◽  
YP Prananto

Abstract Patchouli biomass is a potential precursor for CNS synthesis. In this research, the patchouli was pyrolyzed using the microwave. The purpose of this research is to study the effect of microwave energy and activator toward physicochemistry of CNS and composite (ZnO/CNS) and application of ZnCr2O4/CNS for the pesticide polluted surface water remediation in paddy field. In the process, the biomass was pyrolyzed at four and 8W with and without the ZnCl2 activator. The products were blended and evaporated to obtain CNS and ZnO/CNS. The products were characterized using FTIR spectrometry, XRD, and dispersion test. The composites were used to synthesize ZnCr2O4/CNS at 600W in the microwave. The composites were used for buthylphenylmethyl carbamate pesticide degradation test (BPMC) for 48 h with H2O2 oxidation. The FTIR spectra indicated better carbonization for products taken using an activator at both microwave energies. The X-ray diffractograms showed the turbostratic structure of carbon obtained at 4W pyrolysis (with activator), meanwhile 8W pyrolysis (without activator). ZnO and turbostratic carbon structures were shown by the product of 8W pyrolisis with activator. The calcined composite indicated ZnCr2O4/CNS. The degradation test showed that ZnCr2O4/CNS(8W) catalyst decreased the BMPC concentration almost three times that of the composite (4W).


2017 ◽  
Vol 49 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ali A. Ameli ◽  
James R. Craig

Abstract We present a new semi-analytical flow and transport model for the simulation of 3D steady-state flow and particle movement between groundwater, a surface water body and a radial collector well in geometrically complex unconfined aquifers. This precise and grid-free Series Solution-analytic element method approach handles the irregular configurations of radial wells more efficiently than grid-based methods. This method is then used to explore how pumping well location and river shape interact and together influence (1) transit time distribution (TTD) of captured water in a radial collector well and TTD of groundwater discharged into the river and (2) the percentage of well waters captured from different sources. Results show that meandering river shape plays a significant role in controlling the aforementioned metrics and that increasing the pumping rate has different consequences in different situations. This approach can also inform the design of water remediation and groundwater protection systems (e.g., river bank filtration and well head protection area).


Author(s):  
John M. Wehrung ◽  
Richard J. Harniman

Water tables in aquifer regions of the southwest United States are dropping off at a rate which is greater than can be replaced by natural means. It is estimated that by 1985 wells will run dry in this region unless adequate artificial recharging can be accomplished. Recharging with surface water is limited by the plugging of permeable rock formations underground by clay particles and organic debris.A controlled study was initiated in which sand grains were used as the rock formation and water with known clay concentrations as the recharge media. The plugging mechanism was investigated by direct observation in the SEM of frozen hydrated sand samples from selected depths.


2019 ◽  
Vol 38 (2) ◽  
pp. 200-220
Author(s):  
SOMNATH SAHA ◽  
◽  
SUKANTA KUMAR SAHA ◽  
TATHAGATA GHOSH ◽  
ROLEE KANCHAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document