Power saving model for mobile device and virtual base station in the 5G era

Author(s):  
M. Sajid Mushtaq ◽  
Scott Fowler ◽  
Abdelhamid Mellouk
Author(s):  
Xinbo Wang ◽  
Saigopal Thota ◽  
Massimo Tornatore ◽  
Sang-Soo Lee ◽  
Han-Hyub Lee ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 000238-000242
Author(s):  
Hiroyuki Takahashi ◽  
Satoshi Hirano ◽  
Daisuke Yamashita

Abstract We develop the antenna module substrate which is broadband and large gain using an LTCC technology in a 28GHz band in this study. We used LTCC materials (dielectric constant 5.8, Dielectric loss 0.002@28GHz) which we developed for materials originally. First of all, we confirmed ability of slot array antenna made by LTCC for 5G application to get broadband property. The structure of designed array antenna became 40mm × 3.2mm × t1.6mm. We confirmed that this antenna has wider bandwidth (2.2GHz) and higher gain (6dBi). But this antenna size is too large for applying mobile device. Therefore we redesigned to reduce antenna size without specification degradation. The structure of redesigned antenna element becomes basically 4.8mm × 6.7mm × t1.0mm. This antenna has wider bandwidth (2.7GHz). The gains are more than 5dBi for the characteristic of this element in a band. Assume this antenna a fabric; 2 × 2 (4 elements: for mobile device) and 4 × 4 (16 elements: for small cell base station) we make an array antenna for Small cell base station and for mobile device. We will evaluate a beam steering examination with emission properties (gain, beam angle).


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 49366-49374 ◽  
Author(s):  
Lin Tian ◽  
Yiqing Zhou ◽  
Yuanyuan Wang ◽  
Jun Yang ◽  
Qian Sun ◽  
...  

Author(s):  
Dieter Ferling ◽  
Patrick Juschke ◽  
Xin Yu ◽  
Thomas Bohn ◽  
Anton Ambrosy ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Abid Jan

Existing cellular networks remain operational throughout the year irrespective of traffic. The usage of Coordinated Multipoint (CoMP) transmission to provide service in the coverage area of a switched off base station (BS) during off-peak traffic hours has been investigated in this work. The switching off of a BS reduces its energy consumption to zero, however to cover the switched off BS coverage area by neighbouring BS’s, CoMP transmission causes an increase in energy consumption of the neighbouring BS’s. With increasing the number of base stations taking part in CoMP transmission the power consumption of CoMP base stations and site air conditioning unit increases. Results show that the aggressive usage of CoMP is not feasible in most of the twelve switching modes investigated. From the Energy Efficiency Ratio the most energy efficient switching mode is identified. It is then applied to part of a cellular network and the amount of power saving and Carbon Dioxide equivalent (CO2e) is determined. It is found that within a network of 42 cells 7.26% power can be saved by switching off seven base stations during off-peak traffic hours.


2010 ◽  
Vol 7 (2) ◽  
pp. 32 ◽  
Author(s):  
L. Khriji ◽  
F. Touati ◽  
N. Hamza

 Nowadays, there is a significant improvement in technology regarding healthcare. Real-time monitoring systems improve the quality of life of patients as well as the performance of hospitals and healthcare centers. In this paper, we present an implementation of a designed framework of a telemetry system using ZigBee technology for automatic and real-time monitoring of Biomedical signals. These signals are collected and processed using 2-tiered subsystems. The first subsystem is the mobile device which is carried on the body and runs a number of biosensors. The second subsystem performs further processing by a local base station using the raw data which is transmitted on-request by the mobile device. The processed data as well as its analysis are then continuously monitored and diagnosed through a human-machine interface. The system should possess low power consumption, low cost and advanced configuration possibilities. This paper accelerates the digital convergence age through continual research and development of technologies related to healthcare. 


Author(s):  
Gopalan M. ◽  
Marthandan G. ◽  
Eswaran C.

IEEE 802.16e is extensively used these days for both data and voice communications as it makes available high-speed wireless access. However, in view of the fact that mobile subscriber stations are powered by a limited capacity battery, power saving mechanism is necessary to improve network performance. In this article, the authors introduce a load based sleep scheduling mechanism with reduced state transitions for IEEE 802.16e Networks. The mechanism encompasses two phases, load-based sleep scheduling and a reduced state transition (RST) algorithm. Considering network load information, the Base Station (BS) assigns a sleep window size for each mobile subscriber station (MS). The proposed RST algorithm reduces the number of state transitions between sleep and active mode by watchfully combining any two adjacent active bands. Further, the technique considers network load and delay as QoS metrics. Through simulation results, the authors prove the proficiency of their mechanism.


Author(s):  
ZhenBo Zhu ◽  
Parul Gupta ◽  
Qing Wang ◽  
Shivkumar Kalyanaraman ◽  
Yonghua Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document