Adaptive Fuzzy PI Controller Tuning Method For Speed Tracking of Permanent Magnet Synchronous Motor Servo System

Author(s):  
Hu Li ◽  
Bao Song ◽  
Xiaoqi Tang ◽  
Tianhang Chen ◽  
Yuanlong Xie ◽  
...  
2021 ◽  
Vol 23 (4) ◽  
pp. 301-310
Author(s):  
Imene Djelamda ◽  
Ilhem Bouchareb ◽  
Abdesselam Lebaroud

This work presents a field oriented control (FOC) strategy (Fuzzy Logic (FL)) associated with PI controller applied to the control system of an permanent magnet synchronous motor (PMSM) powered by an inverter dedicated to electric vehicles, the major challenge of our research work is a control law for a permanent magnet synchronous motor more efficient in terms of rejection of disturbances; stability and robustness with respect to parametric uncertainties, A comparison of the performance of the proposed FOC with the FOC with the fuzzy-PI will be presented. The overall development scheme is summarized and an example illustrates features of the control approach performed on a 0.5 kW PMSM drive. The torque and the speed will be judged and compared for the two orders offered. As results, the behavior of the FOC based on fuzzy-PI controller is more efficient compared to the conventional vector control.


2020 ◽  
Vol 8 (6) ◽  
pp. 5317-5321

Present research demonstrates an experimental work and simulation of FPGA based PMSM drives consists of PI and Fuzzy logic controller, for speed control under load, zero load and random change in load conditions. It also delineates the overall performance of a closed loop vector Permanent Magnet Synchronous Motor (PMSM) drive consisting of two loops, current for inner and speed for outer loops for better speed tracking systems. The resistive load which is connected across the armature of dc shunt motor and coupled with PMSM is varied. The resultant speed and torque are studied in details. Result showed that in case of fuzzy logic controller, the peak overshoot and settling time can be minimized. This FPGA based PMSM drives can be used for different paramount application under constant speed.


Sign in / Sign up

Export Citation Format

Share Document