Closed Form Solutions to Displacement and Stress on Functionally Graded Rotating Disk with Exponentially-Varying Material Properties and Thickness

Author(s):  
Wen Feng Lin
Author(s):  
H R Hamidzadeh ◽  
L Moxey

The free vibrations of circular and elliptical thin-film lens are investigated. In particular, linear closed-form solutions for free vibrations of these structures were achieved and modal analysis was performed. The vibration response of the thin-film membranes were mathematically modelled using the Mathieu equation. Numerical results for various nodal diameters were computed. For the limited case, when an elliptical lens becomes circular, an excellent comparison was established with the available analytical solution. Experimental analyses were conducted to determine the effects of various parameters, such as material properties, membrane pre-strain rate, and the geometry, on natural frequency and mode shapes of these structures. The comparison verified the adequacy of linear solutions to predict the dynamic response of thin-film lenses.


Author(s):  
L. Moxey ◽  
H. Hamidzadeh

Dynamics of circular and elliptical thin-film lens are investigated. In particular, linear closed-form solutions for free vibrations of these structures were achieved and modal analysis was performed. The vibration response of the thin film membranes were mathematically modeled using Mathieu equation. Numerical results for various nodal diameters were computed. For the limited case when an elliptical lens becomes circular, an excellent comparison was established with the available analytical solution. Experimental analyses were conducted to determine the effects of various parameters such as material properties, membrane pre strain and the geometry on the dynamic response of these structures. The comparison verified the adequacy of linear solutions to predict the dynamic response of thin film lenses.


Sign in / Sign up

Export Citation Format

Share Document