Received signal strength ratio based optical wireless indoor localization using light emitting diodes for illumination

Author(s):  
Soo-Yong Jung ◽  
Chang-Kuk Choi ◽  
Sang Hu Heo ◽  
Seong Ro Lee ◽  
Chang-Soo Park
Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 389 ◽  
Author(s):  
David Plets ◽  
Sander Bastiaens ◽  
Luc Martens ◽  
Wout Joseph

Whereas the impact of photodiode noise and reflections is heavily studied in Visible Light Positioning (VLP), an often underestimated deterioration of VLP accuracy is caused by tilt of the Light Emitting Diodes (LEDs). Small LED tilts may be hard to avoid and can have a significant impact on the claimed centimeter-accuracy of VLP systems. This paper presents a Monte-Carlo-based simulation study of the impact of LED tilt on the accuracy of Received Signal Strength (RSS)-based VLP for different localization approaches. Results show that trilateration performs worse than (normalized) Least Squares algorithms, but mainly outside the LED square. Moreover, depending on inter-LED distance and LED height, median tilt-induced errors are in the range between 1 and 6 cm for small LED tilts, with errors scaling linearly with the LED tilt severity. Two methods are proposed to estimate and correct for LED tilts and their performance is compared.


2019 ◽  
pp. 405-433
Author(s):  
Jie Yang ◽  
Yingying Chen ◽  
Richard P. Martin ◽  
Wade Trappe ◽  
Marco Gruteser

2011 ◽  
pp. 395-424 ◽  
Author(s):  
Jie Yang ◽  
Yingying Chen ◽  
Richard P. Martin ◽  
Wade Trappe ◽  
Marco Gruteser

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2392
Author(s):  
Óscar Belmonte-Fernández ◽  
Emilio Sansano-Sansano ◽  
Antonio Caballer-Miedes ◽  
Raúl Montoliu ◽  
Rubén García-Vidal ◽  
...  

Indoor localization is an enabling technology for pervasive and mobile computing applications. Although different technologies have been proposed for indoor localization, Wi-Fi fingerprinting is one of the most used techniques due to the pervasiveness of Wi-Fi technology. Most Wi-Fi fingerprinting localization methods presented in the literature are discriminative methods. We present a generative method for indoor localization based on Wi-Fi fingerprinting. The Received Signal Strength Indicator received from a Wireless Access Point is modeled by a hidden Markov model. Unlike other algorithms, the use of a hidden Markov model allows ours to take advantage of the temporal autocorrelation present in the Wi-Fi signal. The algorithm estimates the user’s location based on the hidden Markov model, which models the signal and the forward algorithm to determine the likelihood of a given time series of Received Signal Strength Indicators. The proposed method was compared with four other well-known Machine Learning algorithms through extensive experimentation with data collected in real scenarios. The proposed method obtained competitive results in most scenarios tested and was the best method in 17 of 60 experiments performed.


2019 ◽  
Vol 9 (18) ◽  
pp. 3930 ◽  
Author(s):  
Jaehyun Yoo ◽  
Jongho Park

This paper studies the indoor localization based on Wi-Fi received signal strength indicator (RSSI). In addition to position estimation, this study examines the expansion of applications using Wi-Fi RSSI data sets in three areas: (i) feature extraction, (ii) mobile fingerprinting, and (iii) mapless localization. First, the features of Wi-Fi RSSI observations are extracted with respect to different floor levels and designated landmarks. Second, the mobile fingerprinting method is proposed to allow a trainer to collect training data efficiently, which is faster and more efficient than the conventional static fingerprinting method. Third, in the case of the unknown-map situation, the trajectory learning method is suggested to learn map information using crowdsourced data. All of these parts are interconnected from the feature extraction and mobile fingerprinting to the map learning and the estimation. Based on the experimental results, we observed (i) clearly classified data points by the feature extraction method as regards the floors and landmarks, (ii) efficient mobile fingerprinting compared to conventional static fingerprinting, and (iii) improvement of the positioning accuracy owing to the trajectory learning.


Sign in / Sign up

Export Citation Format

Share Document