Application of Tree Data Structures for Improving Energy Efficiency & Life Time Of Wireless Sensor Networks(WSN): A Critical Study of the State-of-the-Art and Feasibillity For Further Research

Author(s):  
Pranesh ◽  
Santhosh L Deshpande
Author(s):  
Riaz Ahmed Shaikh ◽  
Brian J. dAuriol ◽  
Heejo Lee ◽  
Sungyoung Lee

Until recently, researchers have focused on the cryptographic-based security issues more intensively than the privacy and trust issues. However, without the incorporation of trust and privacy features, cryptographic-based security mechanisms are not capable of singlehandedly providing robustness, reliability and completeness in a security solution. In this chapter, we present generic and flexible taxonomies of privacy and trust. We also give detailed critical analyses of the state-of-the-art research, in the field of privacy and trust that is currently not available in the literature. This chapter also highlights the challenging issues and problems.


2007 ◽  
Vol 30 (7) ◽  
pp. 1655-1695 ◽  
Author(s):  
Paolo Baronti ◽  
Prashant Pillai ◽  
Vince W.C. Chook ◽  
Stefano Chessa ◽  
Alberto Gotta ◽  
...  

Author(s):  
Isabelle Augé-Blum ◽  
Fei Yang ◽  
Thomas Watteyne

This chapter presents the state-of-the-art of real-time communication in the challenging topic of Wireless Sensor Networks (WSNs). In real-time communication, the duration between the event which initiates the sending of a message, and the instant this message is received must be smaller than a known delay. Because topologies are extremely dynamic and not known priori, this type of constraint is very hard to meet in WSNs. In this chapter, the different communication protocols proposed in the literatures, together with their respective advantages and drawbacks, are discussed. We focus on MAC and routing because they are key layers in real-time communication. As most existing protocols are not suitable under realistic constraints where sensor nodes and wireless links are unreliable, we give, at the end of this chapter, some insights about future trends in designing real-time protocols. We hope to give the reader an overview of recent research works in this complex topic which we consider to be essential in critical applications.


2019 ◽  
Vol 28 (05) ◽  
pp. 1930005 ◽  
Author(s):  
Sergio Diaz ◽  
Diego Mendez ◽  
Rolf Kraemer

We present the state-of-the-art related to self-organizing and self-healing techniques. On the one hand, self-organization is the nodes’ ability to construct a network topology without any human intervention and any previous topology knowledge. On the other hand, self-healing is the network’s ability to recover from failures by using hardware and software redundancies. By using both techniques, Wireless Sensor Networks (WSNs) can be deployed in unattended and harsh environments where on-site technical service is unfeasible. In the last few years, a large amount of work has been done in these two research areas, but these different techniques occur at different layers and with no general classification or effort to consolidate them. One of the contributions of this paper is the consolidation of the most significant and relevant mechanisms in these two areas, and additionally, we made an effort to organize and classify them. In this review, we explain in detail the two stages of self-organization, namely topology construction and management. Moreover, we present a comprehensive study of the four steps in a self-healing technique, namely, information collection, fault detection, fault classification and fault recovery. By introducing relevant work, comparative tables, and future trends, we provide the reader with a complete picture of the state-of-the-art. Another contribution is the proposal of a unified framework that employs self-organizing and self-healing mechanisms to achieve a fault-tolerant network.


2012 ◽  
pp. 120-129
Author(s):  
Isabelle Augé-Blum ◽  
Fei Yang ◽  
Thomas Watteyne

This chapter presents the state-of-the-art of real-time communication in the challenging topic of Wireless Sensor Networks (WSNs). In real-time communication, the duration between the event which initiates the sending of a message, and the instant this message is received must be smaller than a known delay. Because topologies are extremely dynamic and not known priori, this type of constraint is very hard to meet in WSNs. In this chapter, the different communication protocols proposed in the literatures, together with their respective advantages and drawbacks, are discussed. We focus on MAC and routing because they are key layers in real-time communication. As most existing protocols are not suitable under realistic constraints where sensor nodes and wireless links are unreliable, we give, at the end of this chapter, some insights about future trends in designing real-time protocols. We hope to give the reader an overview of recent research works in this complex topic which we consider to be essential in critical applications.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6168
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Data collection is an important application of wireless sensor networks (WSNs) and Internet of Things (IoT). Current routing and addressing operations in WSNs are based on IP addresses, while data collection and data queries are normally information-centric. The current IP-based approach incurs significant management overheads and is inefficient for semantic data collection and queries. To address the above issue, this paper proposes a semantic data collection tree (sDCT) construction scheme to build up a semantic data collection tree for wireless sensor networks. The semantic tree is rooted at the edge/sink and supports data collection tasks, queries, and configurations efficiently. We implement the sDCT in Contiki and evaluate the performance of the sDCT in comparison with the state-of-the-art scheme, 6LoWPAN/RPL and L2RMR, using telosb sensors under various scenarios. The obtained results show that the sDCT achieves a significant improvement in terms of the energy efficiency and the packet transmissions required for data collection or a query task compared to 6LoWPAN/RPL and L2RMR.


Sign in / Sign up

Export Citation Format

Share Document