road gradient
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 2130 (1) ◽  
pp. 012001
Author(s):  
L Grabowski

Abstract Simulation studies can be used to determine the fuel consumption and carbon dioxide emissions of city buses. The operating conditions of such vehicles are characterised by a very high variability of vehicle speed due to the large number of stops along the route of the bus. During vehicle testing, driving cycles are used to replicate the real-world conditions and to achieve repeatable test conditions. Such a driving cycle is a profile of speed represented as a function of time or as a function of distance. The speed profile over time can be an advantageous determinant, based on laboratory tests, for estimating fuel consumption and pollutant emissions of city buses. The research subject of this paper was the simulation of bus driving under simulated urban traffic conditions, carried out by means of the VECTO software. VECTO is a tool designed to perform the calculations of fuel consumption and carbon dioxide emissions of vehicles. It enables to model the powertrain of trucks and buses and to carry out simulations on various routes defined by driving cycles. The test object was a mega class bus, equipped with a 225 kW engine. The bus has three axles, including the rear drive axle. The scope of research included four cycles: urban, interurban, urbandelivery and interurban. Each of these was analysed in terms of speed and road gradient. The aim of this work was to perform a simulation study of the effect of the vehicle traffic conditions on the amount of CO2 emitted and fuel consumption. The obtained results were analysed.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7431
Author(s):  
Suhaib Alshayeb ◽  
Aleksandar Stevanovic ◽  
B. Brian Park

Transportation agencies optimize signals to improve safety, mobility, and the environment. One commonly used objective function to optimize signals is the Performance Index (PI), a linear combination of delays and stops that can be balanced to minimize fuel consumption (FC). The critical component of the PI is the stop penalty “K,” which expresses an FC stop equivalency estimated in seconds of pure delay. This study applies vehicular trajectory and FC data collected in the field, for a large fleet of modern vehicles, to compute the K-factor. The tested vehicles were classified into seven homogenous groups by using the k-prototype algorithm. Furthermore, multigene genetic programming (MGGP) is utilized to develop prediction models for the K-factor. The proposed K-factor models are expressed as functions of various parameters that impact its value, including vehicle type, cruising speed, road gradient, driving behavior, idling FC, and the deceleration duration. A parametric analysis is carried out to check the developed models’ quality in capturing the individual impact of the included parameters on the K-factor. The developed models showed an excellent performance in estimating the K-factor under multiple conditions. Future research shall evaluate the findings by using field-based K-values in optimizing signals to reduce FC.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongwei Ling ◽  
Bin Huang

In view of the high difficulty in coupling of various electric vehicle parameters, intractable parameter estimation, and unreasonable distribution of vehicle driving torque, the four-wheel hub motor is applied to drive electric vehicles, which can instantly obtain the torque and speed of the hub motor and achieve precise control of the torque of each wheel. According to the vehicle longitudinal dynamics model, a progressive RLS (PRLS) algorithm for real-time estimation of vehicle mass and road gradient is proposed. Meanwhile, by means of taking the longitudinal acceleration of the vehicle and the road gradient obtained from the estimation algorithm as the parameter of the torque distribution at the front and rear axles, a dynamic compensation and distribution control strategy of the front and rear axle torques is designed. Moreover, based on hardware-in-the-loop real-time simulation and real-vehicle tests, the effectiveness of the proposed estimation algorithm and the rationality of the real-time distribution control strategy of driving torque are verified.


2021 ◽  
Vol 13 (18) ◽  
pp. 10037
Author(s):  
Suhaib Alshayeb ◽  
Aleksandar Stevanovic ◽  
Nemanja Dobrota

Sustainability has become one of the most important goals when optimizing traffic signals. This goal is achieved through utilizing various objective functions to reduce sustainability metrics (e.g., fuel consumption and emissions). However, most available objective functions do not distinguish between the reduction mechanism of various types of emissions. Further, such functions do not consider the compound impact of multiple operational conditions (e.g., road gradient) influencing emissions on the optimized signal plans. This study derives a new Environmental Performance Index representing a surrogate measure for emission estimates that can be used as an objective function in signal timings optimization to reduce emissions under various operational conditions. The Environmental Performance Index is a linear combination of delays and stops. The key factor of the Environmental Performance Index is the emissions-based stop penalty, which represents an emission stop equivalency measured in seconds of delay. This study also uses traffic simulation and emission models to investigate the compound impact of several operational conditions on the stop penalty. Results show that the stop penalty varies significantly with all the investigated conditions and that the stop penalty is unique for different types of emissions. These findings may have significant implications on the current practice of sustainable signal timing optimization.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1243
Author(s):  
Heather Simon ◽  
Barron H. Henderson ◽  
R. Chris Owen ◽  
Kristen M. Foley ◽  
Michelle G. Snyder ◽  
...  

This study uses Las Vegas near-road measurements of carbon monoxide (CO) and nitrogen oxides (NOx) to test the consistency of onroad emission constraint methodologies. We derive commonly used CO to NOx ratios (∆CO:∆NOx) from cross-road gradients and from linear regression using ordinary least squares (OLS) regression and orthogonal regression. The CO to NOx ratios are used to infer NOx emission adjustments for a priori emissions estimates from EPA’s MOtor Vehicle Emissions Simulator (MOVES) model assuming unbiased CO. The assumption of unbiased CO emissions may not be appropriate in many circumstances but was implemented in this analysis to illustrate the range of NOx scaling factors that can be inferred based on choice of methods and monitor distance alone. For the nearest road estimates (25 m), the cross-road gradient and ordinary least squares (OLS) agree with each other and are not statistically different from the MOVES-based emission estimate while ∆CO:∆NOx from orthogonal regression is significantly higher than the emitted ratio from MOVES. Using further downwind measurements (i.e., 115 m and 300 m) increases OLS and orthogonal regression estimates of ∆CO:∆NOx but not cross-road gradient ∆CO:∆NOx. The inferred NOx emissions depend on the observation-based method, as well as the distance of the measurements from the roadway and can suggest either that MOVES NOx emissions are unbiased or that they should be adjusted downward by between 10% and 47%. The sensitivity of observation-based ∆CO:∆NOx estimates to the selected monitor location and to the calculation method characterize the inherent uncertainty of these methods that cannot be derived from traditional standard-error based uncertainty metrics.


This research reflects on the impacts of traffic factors, car acceleration, volume of traffic, road gradient and the resulting sum of air pollutants, with a significant impact on the emissions of the vehicles. The general and detailed urban plans are normally addressed to these factors. Such considerations usually determine the adverse effects of motor vehicles, and environmental hazards, such as air pollution and vibration, which affects highways and bridges. However, the effect of road transport and preparation on the ecosystem is described. The research focuses on climate aspects that can be identified and designed so that all generic proposals can include them. In this study, CO, NO2, TVOC’s and SO2 concentration at multiple sampling sites were screened regularly. The study revealed that air pollutant rates are highly correlated with traffic movement and prevailing gradients. The SO2, NO2, CO and TVOC’s concentrations were very much associated to significant road flow parameters such as traffic elevation, intensity and amount of transport.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 54
Author(s):  
Zhiqiang Sun ◽  
Kazushi Sanada ◽  
Bingzhao Gao ◽  
Jiaqi Jin ◽  
Jingshun Fu ◽  
...  

Automatic mechanical transmission (AMT) with a gearshift assistant mechanism is a novel transmission architect concept aiming to improve the torque interruption and driveline jerk of AMT. During the shifting process, the shifting performance deteriorates as the varying road gradient and the friction coefficient worsen the coupling effect between the motor torque and the clutch friction torque. This paper focuses on improving the controller’s robustness of AMT with a gearshift assistant mechanism against the perturbed parameters during the stage of torque gap filling. In this paper, a detailed powertrain simulation model was presented. Based on a decoupling controller and a disturbance compensator, proportional-integral-differential (PID) controllers are applied to enhance the robustness and the decoupling effect. The PID parameters are automatically tuned by employing the Nelder-Mead method. In the tuning process, a cost function was established to demonstrate the outputs’ reference tracking performance, and the PID parameters are tuned by minimizing the cost function. Finally, the tuned parameters are stored in PID maps to make them adjustable online. Simulation results show that with the perturbed parameters well estimated, the upshift process was successful and the torque filling effect was also acceptable. The proposed transmission is a promising structure for industry applications.


Sign in / Sign up

Export Citation Format

Share Document