A Survey on Surface Crack Detection in Concretes using Traditional, Image Processing, Machine Learning, and Deep Learning Techniques

Author(s):  
Vidya Vijayan ◽  
Chinsu Mereena Joy ◽  
Shailesh S
2019 ◽  
Vol 63 (11) ◽  
pp. 1658-1667
Author(s):  
M J Castro-Bleda ◽  
S España-Boquera ◽  
J Pastor-Pellicer ◽  
F Zamora-Martínez

Abstract This paper presents the ‘NoisyOffice’ database. It consists of images of printed text documents with noise mainly caused by uncleanliness from a generic office, such as coffee stains and footprints on documents or folded and wrinkled sheets with degraded printed text. This corpus is intended to train and evaluate supervised learning methods for cleaning, binarization and enhancement of noisy images of grayscale text documents. As an example, several experiments of image enhancement and binarization are presented by using deep learning techniques. Also, double-resolution images are also provided for testing super-resolution methods. The corpus is freely available at UCI Machine Learning Repository. Finally, a challenge organized by Kaggle Inc. to denoise images, using the database, is described in order to show its suitability for benchmarking of image processing systems.


2020 ◽  
Author(s):  
Jordan Reece ◽  
Margaret Couvillon ◽  
Christoph Grüter ◽  
Francis Ratnieks ◽  
Constantino Carlos Reyes-Aldasoro

AbstractThis work describe an algorithm for the automatic analysis of the waggle dance of honeybees. The algorithm analyses a video of a beehive with 13,624 frames, acquired at 25 frames/second. The algorithm employs the following traditional image processing steps: conversion to grayscale, low pass filtering, background subtraction, thresholding, tracking and clustering to detect run of bees that perform waggle dances. The algorithm detected 44,530 waggle events, i.e. one bee waggling in one time frame, which were then clustered into 511 waggle runs. Most of these were concentrated in one section of the hive. The accuracy of the tracking was 90% and a series of metrics like intra-dance variation in angle and duration were found to be consistent with literature. Whilst this algorithm was tested on a single video, the ideas and steps, which are simple as compared with Machine and Deep Learning techniques, should be attractive for researchers in this field who are not specialists in more complex techniques.


Author(s):  
Ozge Oztimur Karadag ◽  
Ozlem Erdas

In the traditional image processing approaches, first low-level image features are extracted and then they are sent to a classifier or a recognizer for further processing. While the traditional image processing techniques employ this step-by-step approach, majority of the recent studies prefer layered architectures which both extract features and do the classification or recognition tasks. These architectures are referred as deep learning techniques and they are applicable if sufficient amount of labeled data is available and the minimum system requirements are met. Nevertheless, most of the time either the data is insufficient or the system sources are not enough. In this study, we experimented how it is still possible to obtain an effective visual representation by combining low-level visual features with features from a simple deep learning model. As a result, combinational features gave rise to 0.80 accuracy on the image data set while the performance of low-level features and deep learning features were 0.70 and 0.74 respectively.


Author(s):  
F. Panella ◽  
J. Boehm ◽  
Y. Loo ◽  
A. Kaushik ◽  
D. Gonzalez

This work presents the combination of Deep-Learning (DL) and image processing to produce an automated cracks recognition and defect measurement tool for civil structures. The authors focus on tunnel civil structures and survey and have developed an end to end tool for asset management of underground structures. In order to maintain the serviceability of tunnels, regular inspection is needed to assess their structural status. The traditional method of carrying out the survey is the visual inspection: simple, but slow and relatively expensive and the quality of the output depends on the ability and experience of the engineer as well as on the total workload (stress and tiredness may influence the ability to observe and record information). As a result of these issues, in the last decade there is the desire to automate the monitoring using new methods of inspection. The present paper has the goal of combining DL with traditional image processing to create a tool able to detect, locate and measure the structural defect.


Author(s):  
V. Malathi ◽  
M. P. Gopinath

Rice is a significant cereal crop across the world. In rice cultivation, different types of sowing methods are followed, and thus bring in issues regarding sampling collection. Climate, soil, water level, and a diversified variety of crop seeds (hybrid and traditional varieties) and the period of growth are some of the challenges. This survey mainly focuses on rice crop diseases which affect the parts namely leaves, stems, roots, and spikelet; it mainly focuses on leaf-based diseases. Existing methods for diagnosing leaf disease include statistical approaches, data mining, image processing, machine learning, and deep learning techniques. This review mainly addresses diseases of the rice crop, a framework to diagnose rice crop diseases, and computational approaches in Image Processing, Machine Learning, Deep Learning, and Convolutional Neural Networks. Based on performance indicators, interpretations were made for the following algorithms namely support vector machine (SVM), convolutional neural network (CNN), backpropagational neural network (BPNN), and feedforward neural network (FFNN).


Sign in / Sign up

Export Citation Format

Share Document