The Conductivity Matrix Reforming Method to Study Non-linear Seepage with Free Surface in Fracture Network of Rock Mass

Author(s):  
Weisheng Xu ◽  
Xingzhou Chen ◽  
Jiangjiang Wu
2013 ◽  
Vol 405-408 ◽  
pp. 2084-2088
Author(s):  
Wei Sheng Xu

A variational inequality formulation method to define the free surface of fracture network was given, related formulas were deduced and the Finite Element Method was used to solve the equations. By computing, the following conclusions were gotten, that is the variational inequality formulation method to solve unconfined seepage in 3 dimensional fracture network of rock mass is possible, and had a better numerical stability and much less mesh-depenciency.


Author(s):  
C-E Janson

A potential-flow panel method is used to compute the waves and the lift force from surface-piercing and submerged bodies. In particular the interaction between the waves and the lift produced close to the free surface is studied. Both linear and non-linear free-surface boundary conditions are considered. The potential-flow method is of Rankine-source type using raised source panels on the free surface and a four-point upwind operator to compute the velocity derivatives and to enforce the radiation condition. The lift force is introduced as a dipole distribution on the lifting surfaces and on the trailing wake, together with a flow tangency condition at the trailing edge of the lifting surface. Different approximations for the spanwise circulation distribution at the free surface were tested for a surface-piercing wing and it was concluded that a double-model approximation should be used for low speeds while a single-model, which allows for a vortex at the free surface, was preferred at higher speeds. The lift force and waves from three surface-piercing wings, a hydrofoil and a sailing yacht were computed and compared with measurements and good agreement was obtained.


2009 ◽  
Author(s):  
Jérémie Raymond ◽  
Jean-Marie Finot ◽  
Jean-Michel Kobus ◽  
Gérard Delhommeau ◽  
Patrick Queutey ◽  
...  

The discussion is based on results gathered during the first two years of a 3 years research program for the benefits of Groupe Finot-Conq, Naval Architects. The introduction presents the objectives of the program: Setting up a practical method using numerical and experimental available tools to design fast planing sailing yachts. The aim of this paper is to compare advantages and disadvantages of four different kinds of CFD codes which are linear and non-linear potential flow approach, RANSE solver using finite differences method and RANSE solver using volume of fluid method. The Fluid Mechanics Laboratory of the Ecole Centrale de Nantes (France) has developed those three approaches so those homemade codes will be used for this study. The first one is REVA, a potential flow code with a linearised free surface condition. ICARE is a RANSE solver using finite differences method with a non linear free surface condition. It is extensively used for industrial projects as for sailing yachts projects (ACC for example). ISIS-CFD is a RANSE solver using finite volume method to build the spatial discretization of the transport equations with unstructured mesh. The latter is able to compute sprays for fast planing ships but is also the slower in terms of CPU time. In addition, we had the opportunity to test FS-FLOW which is a potential flow code with a non linear free surface condition distributed by FRIENDSHIP CONSULTING. Numerical results for the four codes are compared with the other codes' results as with tank tests data. Those tank tests were made using captive model test technique on two Open60' models. Reasons of the choice of the captive model technique are explained and experimental procedures are briefly described. Comparisons between codes are mainly based on the easiness of use, the cost in CPU time and the confidence we can have in the results as a function of the boat speed. Flow visualizations, pressure maps, free surface deformation are shown and compared. Analysis of local quantities integrated or by zone is also presented. Results are analyzed focusing on the ability of each code to represent flow dynamics for every speed with a special attention to high speeds. The practical question raised is to know which kind of answers each code can bring in terms of tendencies evaluation or sensitivity to hull geometry modifications. The main goal is to be able to judge if those codes are able to make reliable and consistent comparisons of different designs. Conclusion is that none of the codes is perfect and gather all the advantages. It is still difficult to propose a definitive methodology to estimate hydrodynamic performances at every speed and at every stage of the design process. Knowing each code limitations, it appears more coherent to use each of them at different stages of the design process: the quickest and less reliable to understand the main tendencies and the longest and more precise to validate the final options.


2020 ◽  
Vol 71 (4) ◽  
pp. 347-358
Author(s):  
DANG Hong-Lam ◽  
THINH Phi Hong

In simulation of fractured rock mass such as mechanical calculation, hydraulic calculation or coupled hydro-mechanical calculation, the representative element volume of fractured rock mass in the simulating code is very important and give the success of simulation works. The difficulties of how to make a representative element volume are come from the numerous fractures distributed in different orientation, length, location of the actual fracture network. Based on study of fracture characteristics of some fractured sites in the world, the paper presented some main items concerning to the fracture properties. A methodology of re-generating a representative element volume of fractured rock mass by DEAL.II code was presented in this paper. Finally, some applications were introduced to highlight the performance as well as efficiency of this methodology.


Author(s):  
Kévin Martins ◽  
Philippe Bonneton ◽  
David Lannes ◽  
Hervé Michallet

AbstractThe inability of the linear wave dispersion relation to characterize the dispersive properties of non-linear shoaling and breaking waves in the nearshore has long been recognised. Yet, it remains widely used with linear wave theory to convert between sub-surface pressure, wave orbital velocities and the free surface elevation associated with non-linear nearshore waves. Here, we present a non-linear fully dispersive method for reconstructing the free surface elevation from sub-surface hydrodynamic measurements. This reconstruction requires knowledge of the dispersive properties of the wave field through the dominant wavenumbers magnitude κ, representative in an energy-averaged sense of a mixed sea-state composed of both free and forced components. The present approach is effective starting from intermediate water depths - where non-linear interactions between triads intensify - up to the surf zone, where most wave components are forced and travel approximately at the speed of non-dispersive shallow-water waves. In laboratory conditions, where measurements of κ are available, the non-linear fully dispersive method successfully reconstructs sea-surface energy levels at high frequencies in diverse non-linear and dispersive conditions. In the field, we investigate the potential of a reconstruction that uses a Boussinesq approximation of κ, since such measurements are generally lacking. Overall, the proposed approach offers great potential for collecting more accurate measurements under storm conditions, both in terms of sea-surface energy levels at high frequencies and wave-by-wave statistics (e.g. wave extrema). Through its control on the efficiency of non-linear energy transfers between triads, the spectral bandwidth is shown to greatly influence non-linear effects in the transfer functions between sub-surface hydrodynamics and the sea-surface elevation.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4477-4484
Author(s):  
Jun-Jun Liu ◽  
Jing Xie ◽  
Yi-Ting Liu ◽  
Gui-Kang Liu ◽  
Rui-Feng Tang ◽  
...  

Single fracture is the most basic element in complex fracture network of rock mass. Therefore, the study of flow characteristics of single fracture is an important way to reasonably predict the complex flow state in engineering rock mass. In order to study the flow characteristics of fractal single fracture, fracture models with dif?ferent fractal dimension and different fracture width are established in this paper. The results show that: the blocking effect of rough structure on fluid is obviously enhanced under high pressure. In addition, it is weakened and reaches a steady-state with the increase of fracture fractal dimension. The larger the fracture width is, the more obvious the phenomenon is. The hydraulic gradient index tends to 0.5 with the increase of fracture width when fractal dimension is greater than 1.3. It also could tend to 0.5 with the increase of fractal dimension when fracture width is greater than 1 mm.


2018 ◽  
Vol 25 (4) ◽  
pp. 919-935 ◽  
Author(s):  
Deng-hua Zhong ◽  
Han Wu ◽  
Bin-ping Wu ◽  
Yi-chi Zhang ◽  
Pan Yue

Sign in / Sign up

Export Citation Format

Share Document