Performance Analysis of Raptor Code for Reconciliation in Continuous Variable Quantum Key Distribution

Author(s):  
Michael Berhane Asfaw ◽  
Xue-Qin Jiang ◽  
Meixiang Zhang ◽  
Jia Hou ◽  
Wei Duan
2020 ◽  
Vol 29 (2) ◽  
pp. 020301
Author(s):  
Shu-Jing Zhang ◽  
Chen Xiao ◽  
Chun Zhou ◽  
Xiang Wang ◽  
Jian-Shu Yao ◽  
...  

2018 ◽  
Vol 8 (10) ◽  
pp. 1951 ◽  
Author(s):  
Fei Li ◽  
Hai Zhong ◽  
Yijun Wang ◽  
Ye Kang ◽  
Duan Huang ◽  
...  

Performance analysis of continuous-variable quantum key distribution (CVQKD) has been one of the focuses of quantum communications. In this paper, we propose an approach to enhancing the secret rate of CVQKD with the multi-core fiber (MCF) system that transmits multiple spatial modes simultaneously. The excess noise contributed by the inter-core crosstalk between cores can be effectively suppressed by quantum channel wavelength management, leading to the performance improvement of the MCF-based CVQKD system. In the security analysis, we perform numerical simulations for the Gaussian-modulated coherent state CVQKD protocol, considering simultaneously the extra insert loss of fan-in/fan-out (FIFO), which is the extra optical device that should be used at the input and the output of the fiber. Simulation results show that the performance of the one-way and two-way protocols for each core are slightly degraded because of the insert loss of the FIFO, but the total secret key rate can be increased, whereas the performance of the measurement-device-independent CVQKD protocol will be degraded due to the effect of the insert loss of the FIFO. These results may provide theoretical foundation for the space-division multiplexing CVQKD system.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 47687-47697
Author(s):  
Shen-Shen Yang ◽  
Jian-Qiang Liu ◽  
Zhen-Guo Lu ◽  
Zeng-Liang Bai ◽  
Xu-Yang Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


2019 ◽  
Vol 9 (22) ◽  
pp. 4956 ◽  
Author(s):  
Xinchao Ruan ◽  
Hang Zhang ◽  
Wei Zhao ◽  
Xiaoxue Wang ◽  
Xuan Li ◽  
...  

We investigate the optical absorption and scattering properties of four different kinds of seawater as the quantum channel. The models of discrete-modulated continuous-variable quantum key distribution (CV-QKD) in free-space seawater channel are briefly described, and the performance of the four-state protocol and the eight-state protocol in asymptotic and finite-size cases is analyzed in detail. Simulation results illustrate that the more complex is the seawater composition, the worse is the performance of the protocol. For different types of seawater channels, we can improve the performance of the protocol by selecting different optimal modulation variances and controlling the extra noise on the channel. Besides, we can find that the performance of the eight-state protocol is better than that of the four-state protocol, and there is little difference between homodyne detection and heterodyne detection. Although the secret key rate of the protocol that we propose is still relatively low and the maximum transmission distance is only a few hundred meters, the research on CV-QKD over the seawater channel is of great significance, which provides a new idea for the construction of global secure communication network.


Sign in / Sign up

Export Citation Format

Share Document